Show simple item record

dc.contributor.authorVlisidou, I
dc.contributor.authorDowling, AJ
dc.contributor.authorEvans, IR
dc.contributor.authorWaterfield, N
dc.contributor.authorffrench-Constant, Richard
dc.contributor.authorWood, W
dc.date.accessioned2016-02-02T14:11:11Z
dc.date.issued2009-07-17
dc.description.abstractDrosophila embryos are well studied developmental microcosms that have been used extensively as models for early development and more recently wound repair. Here we extend this work by looking at embryos as model systems for following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica) and non-pathogenic (Escherichia coli) bacteria and their interaction with embryonic hemocytes using time-lapse confocal microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of bacterial cells of the insect pathogen Photorhabdus leads to a rapid 'freezing' phenotype of the hemocytes associated with significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1) or by recombinant E. coli expressing the mcf1 gene. Mcf1 mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1 on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.en_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.description.sponsorshipBBSRCen_GB
dc.identifier.citationVol. 5, Iss. 7, pp. e1000518 -en_GB
dc.identifier.doi10.1371/journal.ppat.1000518
dc.identifier.grantnumber078400/Z/05/Zen_GB
dc.identifier.grantnumberBB/E021328/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/19531
dc.language.isoenen_GB
dc.publisherPublic Library of Scienceen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/19609447en_GB
dc.relation.urlhttp://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000518en_GB
dc.rightsCopyright © 2009 Vlisidou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_GB
dc.subjectAnimalsen_GB
dc.subjectBacterial Toxinsen_GB
dc.subjectCell Adhesion Moleculesen_GB
dc.subjectDrosophilaen_GB
dc.subjectDrosophila Proteinsen_GB
dc.subjectEmbryo, Nonmammalianen_GB
dc.subjectEnterobacteriaceae Infectionsen_GB
dc.subjectEscherichia colien_GB
dc.subjectHemocytesen_GB
dc.subjectMicroscopy, Fluorescenceen_GB
dc.subjectMicroscopy, Videoen_GB
dc.subjectModels, Animalen_GB
dc.subjectPhotorhabdusen_GB
dc.subjectrac GTP-Binding Proteinsen_GB
dc.titleDrosophila embryos as model systems for monitoring bacterial infection in real time.en_GB
dc.typeArticleen_GB
dc.date.available2016-02-02T14:11:11Z
dc.identifier.issn1553-7366
exeter.place-of-publicationUnited States
dc.descriptionJournal Articleen_GB
dc.descriptionResearch Support, Non-U.S. Gov'ten_GB
dc.identifier.eissn1553-7374
dc.identifier.journalPLoS Pathogensen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record