Diversity of beetle genes encoding novel plant cell wall degrading enzymes
Pauchet, Y; Wilkinson, P; Chauhan, Ritika; et al.ffrench-Constant, Richard
Date: 17 December 2010
Article
Journal
PLoS One
Publisher
Public Library of Science
Publisher DOI
Related links
Abstract
Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of ...
Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.
Biosciences - old structure
Collections of Former Colleges
Item views 0
Full item downloads 0
Related items
Showing items related by title, author, creator and subject.
-
Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda.
Carvalho, RA; Omoto, C; Field, LM; et al. (Public Library of Science, 17 April 2013)The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to ... -
The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer
van der Giezen, M; Cox, S; Tovar, J (BioMed Central, 20 February 2004)BACKGROUND: Iron-sulfur (FeS) proteins are present in all living organisms and play important roles in electron transport and metalloenzyme catalysis. The maturation of FeS proteins in eukaryotes is an essential function ... -
Characterization, crystallization and preliminary X-ray investigation of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.
Fleming, TM; Jones, CE; Piper, PW; et al. (International Union of Crystallography, 1 July 1998)Recombinant Sulfolobus solfataricus glyceraldehyde-3-phosphate dehydrogenase has been purified and found to be a tetramer of 148 kDa. The enzyme shows dual cofactor specificity and uses NADP+ in preference to NAD+. The ...