Show simple item record

dc.contributor.authorRumkee, Jack C.O.
dc.contributor.authorBecher, MA
dc.contributor.authorThorbek, P
dc.contributor.authorKennedy, PJ
dc.contributor.authorOsborne, JL
dc.date.accessioned2016-03-01T11:57:09Z
dc.date.issued2015-11-03
dc.description.abstractTo simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD50, we propose a new index of "lethal imposed stress": the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LISx) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.en_GB
dc.description.sponsorshipJ.R. was funded to do this work on an Industrial CASE PhD studentship funded by the Biology and Biotechnology Sciences Research Council of the UK (BBSRC), and Syngenta. J.O., M.B., and P.K. were supported on BBSRC project BB/K014463/1en_GB
dc.identifier.citationVol. 49, pp. 12879 - 12887en_GB
dc.identifier.doi10.1021/acs.est.5b03593
dc.identifier.urihttp://hdl.handle.net/10871/20318
dc.language.isoenen_GB
dc.publisherAmerican Chemical Societyen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/26444386en_GB
dc.rightsACS AuthorChoice - This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.en_GB
dc.titlePredicting honeybee colony failure: using the BEEHAVE model to simulate colony responses to pesticidesen_GB
dc.typeArticleen_GB
dc.date.available2016-03-01T11:57:09Z
dc.identifier.issn0013-936X
exeter.place-of-publicationUnited States
dc.descriptionPublisheden_GB
dc.descriptionJournal Articleen_GB
dc.descriptionResearch Support, Non-U.S. Gov'ten_GB
dc.identifier.eissn1520-5851
dc.identifier.journalEnvironmental Science and Technologyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record