Show simple item record

dc.contributor.authorWappett, M
dc.contributor.authorDulak, A
dc.contributor.authorYang, ZR
dc.contributor.authorAl-Watban, A
dc.contributor.authorBradford, JR
dc.contributor.authorDry, JR
dc.date.accessioned2016-03-14T08:55:52Z
dc.date.issued2016-01-19
dc.description.abstractBACKGROUND: Identification of synthetic lethal interactions in cancer cells could offer promising new therapeutic targets. Large-scale functional genomic screening presents an opportunity to test large numbers of cancer synthetic lethal hypotheses. Methods enriching for candidate synthetic lethal targets in molecularly defined cancer cell lines can steer effective design of screening efforts. Loss of one partner of a synthetic lethal gene pair creates a dependency on the other, thus synthetic lethal gene pairs should never show simultaneous loss-of-function. We have developed a computational approach to mine large multi-omic cancer data sets and identify gene pairs with mutually exclusive loss-of-function. Since loss-of-function may not always be genetic, we look for deleterious mutations, gene deletion and/or loss of mRNA expression by bimodality defined with a novel algorithm BiSEp. RESULTS: Applying this toolkit to both tumour cell line and patient data, we achieve statistically significant enrichment for experimentally validated tumour suppressor genes and synthetic lethal gene pairings. Notably non-reliance on genetic loss reveals a number of known synthetic lethal relationships otherwise missed, resulting in marked improvement over genetic-only predictions. We go on to establish biological rationale surrounding a number of novel candidate synthetic lethal gene pairs with demonstrated dependencies in published cancer cell line shRNA screens. CONCLUSIONS: This work introduces a multi-omic approach to define gene loss-of-function, and enrich for candidate synthetic lethal gene pairs in cell lines testable through functional screens. In doing so, we offer an additional resource to generate new cancer drug target and combination hypotheses. Algorithms discussed are freely available in the BiSEp CRAN package at http://cran.r-project.org/web/packages/BiSEp/index.html .en_GB
dc.identifier.citationVol. 17, pp. 65 -en_GB
dc.identifier.doi10.1186/s12864-016-2375-1
dc.identifier.other10.1186/s12864-016-2375-1
dc.identifier.urihttp://hdl.handle.net/10871/20686
dc.language.isoenen_GB
dc.publisherBioMed Centralen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/26781748en_GB
dc.relation.urlhttp://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-016-2375-1en_GB
dc.rightsThis is the final version of the article. Available from BioMed Central via the DOI in this record.en_GB
dc.subjectCell lineen_GB
dc.subjectCanceren_GB
dc.subjectFunctional genomicsen_GB
dc.subjectEpigeneticsen_GB
dc.subjectRen_GB
dc.subjectSynthetic lethalityen_GB
dc.subjectTranscriptomicsen_GB
dc.subjectBioinformaticsen_GB
dc.titleMulti-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs.en_GB
dc.typeArticleen_GB
dc.date.available2016-03-14T08:55:52Z
dc.identifier.issn1471-2164
exeter.place-of-publicationEngland
dc.descriptionPublished onlineen_GB
dc.descriptionJournal Articleen_GB
dc.identifier.journalBMC Genomicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record