Show simple item record

dc.contributor.authorClarkson, MO
dc.contributor.authorKasemann, SA
dc.contributor.authorWood, RA
dc.contributor.authorLenton, TM
dc.contributor.authorDaines, SJ
dc.contributor.authorRichoz, S
dc.contributor.authorOhnemueller, F
dc.contributor.authorMeixner, A
dc.contributor.authorPoulton, SW
dc.contributor.authorTipper, ET
dc.date.accessioned2016-03-16T14:08:44Z
dc.date.issued2015-04-10
dc.description.abstractOcean acidification triggered by Siberian Trap volcanism was a possible kill mechanism for the Permo-Triassic Boundary mass extinction, but direct evidence for an acidification event is lacking. We present a high-resolution seawater pH record across this interval, using boron isotope data combined with a quantitative modeling approach. In the latest Permian, increased ocean alkalinity primed the Earth system with a low level of atmospheric CO2 and a high ocean buffering capacity. The first phase of extinction was coincident with a slow injection of carbon into the atmosphere, and ocean pH remained stable. During the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.en_GB
dc.description.sponsorshipM.O.C. acknowledges funding from the Edinburgh University Principal’s Career Development Scholarship, the International Centre for Carbonate Reservoirs, and The Marsden Fund (U001314). R.A.W., T.M.L., and S.W.P. acknowledge support from the Natural Environment Research Council through the “Co-evolution of Life and the Planet” scheme (NE/I005978). T.M.L. and S.J.D. were supported by the Leverhulme Trust (RPG-2013-106). S.A.K. and A.M. acknowledge support from the German Research Foundation (Deutsche Forschungsgemeinschaft) Major Research Instrumentation Program INST 144/307-1. This is a contribution to IGCP 572, with S.R. sponsored for fieldwork by the Austrian National Committee (Austrian Academy of Sciences) for the International Geoscience Programme (IGCP). We are grateful to R. Newton and A. Thomas for helpful discussions, L. Krystyn for field assistance, F. Maurer for discussions on stratigraphy and providing photomicrographs, and B. Mills for assisting with model studies. Data are available online in the supplementary materials and at www.pangaea.de.en_GB
dc.identifier.citationVol. 348, pp. 229 - 232en_GB
dc.identifier.doi10.1126/science.aaa0193
dc.identifier.other348/6231/229
dc.identifier.urihttp://hdl.handle.net/10871/20741
dc.language.isoenen_GB
dc.publisherAmerican Association for the Advancement of Scienceen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/25859043en_GB
dc.subjectAnimalsen_GB
dc.subjectAquatic Organismsen_GB
dc.subjectAtmosphereen_GB
dc.subjectBoronen_GB
dc.subjectCarbonen_GB
dc.subjectCarbon Cycleen_GB
dc.subjectCarbon Isotopesen_GB
dc.subjectEcosystemen_GB
dc.subjectExtinction, Biologicalen_GB
dc.subjectHydrogen-Ion Concentrationen_GB
dc.subjectIsotopesen_GB
dc.subjectOceans and Seasen_GB
dc.subjectSeawateren_GB
dc.subjectTimeen_GB
dc.titleOcean acidification and the Permo-Triassic mass extinctionen_GB
dc.typeArticleen_GB
dc.date.available2016-03-16T14:08:44Z
dc.identifier.issn0036-8075
exeter.place-of-publicationUnited States
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.en_GB
dc.identifier.journalScienceen_GB
dc.identifier.pmid25859043


Files in this item

This item appears in the following Collection(s)

Show simple item record