Show simple item record

dc.contributor.authorKozelj, D
dc.contributor.authorKapelan, Z
dc.contributor.authorNovak, G
dc.contributor.authorSteinman, F
dc.date.accessioned2016-04-29T08:39:36Z
dc.date.issued2014-04-04
dc.description.abstract© 2014 Journal of Mechanical Engineering. All rights reserved. Inverse modelling concentrates on estimating water distribution system (WDS) model parameters that are not directly measurable, e.g. pipe roughness coefficients, which can, therefore, only be estimated by indirect approaches, i.e. inverse modelling. Estimation of the parameter and predictive uncertainty of WDS models is an essential part of the inverse modelling process. Recently, Markov Chain Monte Carlo (MCMC) simulations have gained in popularity in uncertainty analyses due to their effective and efficient exploration of posterior parameter probability density functions (pdf). A Bayesian framework is used to infer prior parameter information via a likelihood function to plausible ranges of posterior parameter pdf. Improved parameter and predictive uncertainty are achieved through the incorporation of prior pdf of parameter values and the use of a generalized likelihood function. We used three prior information sampling schemes to infer the pipe roughness coefficients of WDS models. A hypothetical case study and a real-world WDS case study were used to illustrate the strengths and weaknesses of a particular selection of a prior information pdf. The results obtained show that the level of parameter identifiability (i.e. sensitivity) is an important property for prior pdf selection.en_GB
dc.description.sponsorshipWe are obliged to Jasper A. Vrugt and Cajo ter Braak for providing the code of the DREAM(ZS) algorithm and graphical post-processing software.en_GB
dc.identifier.citationVol. 60, No. 11, pp. 725-734en_GB
dc.identifier.doi10.5545/sv-jme.2014.1741
dc.identifier.urihttp://hdl.handle.net/10871/21308
dc.language.isoenen_GB
dc.publisherPostnina Placana V Gotovinien_GB
dc.relation.urlhttp://ojs.sv-jme.eu/index.php/sv-jme/issue/view/73/showTocen_GB
dc.rights© 2014 Journal of Mechanical Engineering. This is the final version of this open access article. Available from the publisher via the DOI in this record.en_GB
dc.subjectBayesian inferenceen_GB
dc.subjectcalibrationen_GB
dc.subjectgeneralized likelihooden_GB
dc.subjectMarkov Chain Monte Carloen_GB
dc.subjectdifferential evolution adaptive metropolisen_GB
dc.subjectpipe networksen_GB
dc.subjecthydraulicsen_GB
dc.subjectwater distribution systemsen_GB
dc.titleInvestigating prior parameter distributions in the inverse modelling of water distribution hydraulic modelsen_GB
dc.typeArticleen_GB
dc.date.available2016-04-29T08:39:36Z
dc.identifier.issn0039-2480
dc.descriptionPublisheden_GB
dc.descriptionJournal Articleen_GB
dc.identifier.journalStrojniski Vestnik - Journal of Mechanical Engineeringen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record