Resilience-based performance assessment of water-recycling schemes in urban water systems
Behzadian, K; Kapelan, Z; Morley, M
Date: 17 December 2014
Conference paper
Publisher
Elsevier
Publisher DOI
Abstract
Water reuse schemes in urban water system are assessed in this paper against a number of hydraulic performance indicators. A city metabolism model, WaterMet2, is used to evaluate the performance of water reuse schemes. A multi-objective evolutionary algorithm is employed to identify Pareto optimal solutions for the following three ...
Water reuse schemes in urban water system are assessed in this paper against a number of hydraulic performance indicators. A city metabolism model, WaterMet2, is used to evaluate the performance of water reuse schemes. A multi-objective evolutionary algorithm is employed to identify Pareto optimal solutions for the following three objectives: resilience, reliability and total cost. The demonstration of the suggested approach on a real-world case study show the importance of using the resilience index for determining the appropriate schemes. The results suggest, in the case analysed here, the rainwater-harvesting scheme plays a significant role for improvement of resilience index.
Engineering
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0
Related items
Showing items related by title, author, creator and subject.
-
An analysis of the interface between evolutionary algorithm operators and problem features for water resources problems. A case study in water distribution network design
McClymont, Kent; Keedwell, Edward; Savic, Dragan (Elsevier, 7 February 2015)Evolutionary Algorithms (EAs) have been widely employed to solve water resources problems for nearly two decades with much success. However, recent research in hyperheuristics has raised the possibility of developing ... -
Urban water system metabolism assessment using WaterMet2 model
Behzadian, K; Kapelan, Z; Venkatesh, G; et al. (Elsevier, 23 April 2014)This paper presents a new "WaterMet2" model for integrated modelling of an urban water system (UWS). The model is able to quantify the principal water flows and other main fluxes in the UWS. The UWS in WaterMet2 is ... -
Reducing life-cycle carbon footprint in the (re)design of water distribution systems using water demand management interventions
Basupi, Innocent; Kapelan, Zoran; Butler, David (Taylor & Francis, 1 February 2014)Water distribution systems (WDSs) construction, operation and disposal processes contribute to undesirable greenhouse gas (GHG) emissions. GHG concentration in the atmosphere is strongly associated with global warming and ...