Show simple item record

dc.contributor.authorParish, D
dc.date.accessioned2016-05-03T10:18:42Z
dc.date.issued2015-09-09
dc.description.abstractThe mooring of vessels and other floating bodies at sea, such as offshore platforms has necessitated the development of specialised moorings technology. The marine renewable energy (MRE) sector is now at a stage in its development whereby floating devices are adding new challenges to the moorings industries. Floating MRE devices are smaller than, for instance offshore platforms, and are usually targeted for deployment in highly energetic environments. The extreme conditions and the highly dynamic response of an MRE device present challenges in terms of peak loading within the mooring system itself and load transfer to the floating body. Compliant mooring systems provide advantages by reducing the peak loads and fibre ropes are an important asset in achieving such compliance. However, the extent to which existing fibre ropes can safely extend axially to provide compliance is insufficient and is strongly associated to the minimum breaking load (MBL) of the rope. A novel fibre rope mooring tether is presented here that provides advantages over existing ropes. The tether employs a hollow fibre rope containing an elastomeric core, this mechanism de-coupling the extension properties from the strength of the line. The load path is carried through the polyester rope which is terminated conventionally by eye splices, thus minimising any new risks to reliability. Very low axial stiffness is achieved and is shown to be selectable within limits. For comparison, the prototype tether’s MBL of 222 kN is assigned to polyester and Nylon reference ropes. The axial stiifness of these ropes are 590 kN and 463 kN respectively when measured by a secant between the origin and 30% MBL; the novel tether displays an axial stiffness of 72 kN by the same method. This enables the novel tether to achieve more than two and a half times the extension of a comparable Nylon rope in its working range. Numerical modelling of a moored installation demonstrates a threefold reduction in peak load magnitude compared to the existing Nylon rope solution. The tether exhibits two distinct stages of extension, the first having very low axial stiffness. It is demonstrated that the extent of this soft phase can be selected by design and that this might add another useful element of control to moorings design work.en_GB
dc.identifier.citationGordelier, T., Parish, D., Thies, P.R. & Johanning, L. 2015. A Novel Mooring Tether for Highly-Dynamic Offshore Applications; Mitigating Peak and Fatigue Loads via Selectable Axial Stiffness. Journal of Marine Science and Engineering, 3, 1287-1310.en_GB
dc.identifier.urihttp://hdl.handle.net/10871/21337
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.rights.embargoreasonUniversity of Exeter are in discussions with a potential commercial partner regarding exploitation of the IP. Open publication of this thesis will impact negatively on such exploitation.en_GB
dc.subjectMooring tetheren_GB
dc.subjectCompliant mooringen_GB
dc.subjectAxial stiffnessen_GB
dc.subjectMooring loaden_GB
dc.subjectWave energy mooringsen_GB
dc.subjectElastomericen_GB
dc.subjectLoad reductionen_GB
dc.subjectSynthetic fibre ropeen_GB
dc.titleA Novel Mooring Tether for Highly Dynamic Offshore Applicationsen_GB
dc.typeThesis or dissertationen_GB
dc.contributor.advisorJohanning, Lars
dc.contributor.advisorAshton, Ian
dc.descriptionPlease note the following corrections to this text: Abstract, page 3, para 4: 72 kN should read 172 kN Page 134, Table 6.7: 74 should read 174, 72 should read 172en_GB
dc.publisher.departmentCollege of Engineering, Mathematics and Physical Sciencesen_GB
dc.type.degreetitlePhD in Renewable Energyen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnamePhDen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record