Show simple item record

dc.contributor.authorHuang, J
dc.contributor.authorFang, M
dc.contributor.authorHuang, Z
dc.contributor.authorLiu, Y
dc.contributor.authorYang, J
dc.contributor.authorHuang, S
dc.contributor.authorXu, Y
dc.contributor.authorChen, K
dc.contributor.authorYi, S
dc.contributor.authorZhang, S
dc.date.accessioned2016-05-11T12:38:32Z
dc.date.issued2014-03-06
dc.description.abstractThe solid wastes fly ash and aluminum dross were used to prepare the low cost, high added-value product spinel-corundum-Sialon with an in situ aluminothermic reduction-nitridation reaction. The effects of varying raw material components and heating temperatures on the phase compositions, microstructure, bulk density, apparent porosity, and bending strength of products were investigated. The presence of hazardous or impure elements in the products was also evaluated. The sintered materials mainly consisted of micro-/nanosized plate corundum, octahedral spinel, and hexagonal columnar β-Sialon. The bulk density and bending strength of product samples initially increased and then decreased as Al content increased. Product samples with an Al content exceeding 10 mass% that were sintered at 1450°C exhibited the highest bending strength (288 MPa), the lowest apparent porosity (1.24%), and extremely low linear shrinkage (0.67%). The main impurity present was Fe5Si3 with hazardous elements P, Cr, Mn, and Ni doping. This work could provide a new method to reduce environmental pollution and manufacture low cost high performance refractory materials using the abundant waste materials fly ash and aluminum dross. © 2014 Juntong Huang et al.en_GB
dc.description.sponsorshipThis work was financially supported by the National Natural Science Foundation of China (Grant no. 51032007) and the Fundamental Research Funds for Central Universities (Grant no. 2010ZD12).en_GB
dc.identifier.citationVolume 2014, Article ID 789867en_GB
dc.identifier.doi10.1155/2014/789867
dc.identifier.urihttp://hdl.handle.net/10871/21478
dc.language.isoenen_GB
dc.publisherHindawi Publishing Corporationen_GB
dc.rightsCopyright © 2014 Juntong Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_GB
dc.titlePreparation, microstructure, and mechanical properties of spinel-corundum-sialon composite materials from waste fly ash and aluminum drossen_GB
dc.typeArticleen_GB
dc.date.available2016-05-11T12:38:32Z
dc.identifier.issn1687-8434
dc.descriptionThis is the final version of the article. Available from the publisher via the DOI in this record.
dc.identifier.journalAdvances in Materials Science and Engineeringen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record