dc.contributor.author | Cunliffe, AM | |
dc.contributor.author | Puttock, AK | |
dc.contributor.author | Turnbull, L | |
dc.contributor.author | Wainwright, J | |
dc.contributor.author | Brazier, RE | |
dc.date.accessioned | 2016-05-12T08:29:30Z | |
dc.date.issued | 2016-04-22 | |
dc.description.abstract | Semiarid ecosystems are susceptible to changes in dominant vegetation which may have significant implications for terrestrial carbon dynamics. The present study examines the distribution of organic carbon (OC) between particle size fractions in near-surface (0–0.05 m) soil and the water erosion-induced redistribution of particle-associated OC over a grass-shrub ecotone, in a semiarid landscape, subject to land degradation. Coarse (>2 mm) particles have comparable average OC concentrations to the fine (<2 mm) particles, accounting for ~24–38% of the OC stock in the near-surface soil. This may be due to aggregate stabilization by precipitated calcium carbonate in these calcareous arid soils. Critically, standard protocols assuming that coarse fraction particles contain no OC are likely to underestimate soil OC stocks substantially, especially in soils with strongly stabilized aggregates. Sediment eroded from four hillslope scale (10 × 30 m) sites during rainstorm events was monitored over four annual monsoon seasons. Eroded sediment was significantly enriched in OC; enrichment increased significantly across the grass-shrub ecotone and appears to be an enduring phenomenon probably sustained through the dynamic replacement of preferentially removed organic matter. The average erosion-induced OC event yield increased sixfold across the ecotone from grass-dominated to shrub-dominated ecosystems, due to both greater erosion and greater OC enrichment. This erosional pathway is rarely considered when comparing the carbon budgets of grasslands and shrublands, yet this accelerated efflux of OC may be important for long-term carbon storage potentials of dryland ecosystems. | en_GB |
dc.description.sponsorship | This research was conducted while A.M.
Cunliffe was in receipt of a NERC
Doctoral Training grant (NE/K500902/1)
and was supported by the NSF Long
Term Ecological Research Program at
the Sevilleta National Wildlife Refuge
(DEB-1232294) This research was conducted
while A.M.C. was in receipt of a
NERC Doctoral Training grant (NE/
K500902/1) and was supported by the
NSF Long Term Ecological Research
Program at the Sevilleta National
Wildlife Refuge (DEB-1232294). L.T. was
supported by travel bursaries from the
University of Sheffield, the Worshipful
Company of Farmers, and the Royal
Society Dudley Stamp Memorial Fund
Award. We are
grateful to John Buffington, Jon
Pelletier, and two anonymous reviews
whose suggestions greatly improved
upon earlier versions of this paper. | en_GB |
dc.identifier.citation | Vol. 121, No. 4, pp. 684–702 | en_GB |
dc.identifier.doi | 10.1002/2015JF003628 | |
dc.identifier.uri | http://hdl.handle.net/10871/21505 | |
dc.language.iso | en | en_GB |
dc.publisher | Wiley-Blackwell / American Geophysical Union | en_GB |
dc.relation.source | Data presented herein are
archived in the Sevilleta Data Repository
(http://sev.lternet.edu), and with the
corresponding author (AMC). | en_GB |
dc.relation.url | http://agupubs.onlinelibrary.wiley.com/agu/jgr/journal/10.1002/(ISSN)2169-9011/ | en_GB |
dc.rights | ©2016. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited. | en_GB |
dc.subject | soil organic carbon (SOC) | en_GB |
dc.subject | enrichment | en_GB |
dc.subject | semiarid | en_GB |
dc.subject | stabilization mechanism | en_GB |
dc.subject | erosion | en_GB |
dc.subject | shrub encroachment | en_GB |
dc.title.alternative | Dryland, calcareous soils store (and lose) significant quantities of near-surface organic carbon | en_GB |
dc.title | Dryland, calcareous soils store (and lose) more near-surface organic carbon than previously thought | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2016-05-12T08:29:30Z | |
dc.identifier.issn | 2169-9003 | |
dc.description | Published | en_GB |
dc.identifier.journal | Journal of Geophysical Research: Earth Surface | en_GB |