Show simple item record

dc.contributor.authorElliott, Paul Michael
dc.date.accessioned2016-06-07T11:53:30Z
dc.date.issued2016-04-28
dc.description.abstractThe young moving groups are collections of nearby (<200 pc), young (5-150 Myr) pre-main sequence stars; these stars offer us one of the best opportunities to characterise stellar multiplicity, sub-stellar phenomena, disc evolution and planet formation. Here we present results from a series of multiplicity studies aimed at producing comprehensive multiplicity statistics of the young moving groups. The aim was to compare the derived statistics of the young moving groups to other populations in order to investigate whether the abundance and properties of multiple systems are environment independent. We have combined high-resolution spectroscopy, AO-imaging and direct imaging to identify and characterise multiple systems across a huge range of orbital periods (1- 10e10 day). The observational techniques also allow us to constrain the abundance of multiple systems in these populations by calculating detection limits. We found many similarities (frequency of spectroscopic binaries; frequency, mass-ratio and physical separation of visual binaries) between the young moving groups and both younger and older regions, for multiple systems with physical separations smaller than 1000 au. We did, however, identify a significant number of new wide (>1000 au) companions. We reconciled the apparent excess of wide binary systems, when compared to the field population, by arguing that the wide systems are weakly bound and most likely decaying. By comparing the multiplicity statistics in one particular moving group we showed that the dynamical evolution of non-hierarchical protostars could lead to the population of wide binaries we can observe today. Our results indicate that the majority of low-mass stars form in small groups with 3 or 4 components that undergo significant dynamical evolution. The multiplicity properties of the young nearby moving groups are statistically similar to many other populations, supporting the environment-independent formation of multiple systems.en_GB
dc.identifier.citationElliott, P., Bayo, A., Melo, C. H. F., Torres, C. A. O., Sterzik, M., and Quast, G. R. (2014). Search for associations containing young stars (SACY). V. Is multiplicity universal? Tight multiple systems. A&A, 568:A26.en_GB
dc.identifier.citationElliott, P., Huelamo, N., Bouy, H., Bayo, A., Melo, C. H. F., Torres, C. A. O., Sterzik, M. F., Quast, G. R., Chauvin, G., and Barrado, D. (2015). Search for associations containing young stars (SACY). VI. Is multiplicity universal? Stellar multiplicity in the range 3-1000 au from adaptive-optics observations. A&A, 580:A88.en_GB
dc.identifier.citationElliott, P., Bayo, A., Melo, C. H. F., Torres, C. A. O., Sterzik, M. F., Quast, G. R., Montes, D., and Brahm, R. (2016). Search for associations containing young stars (SACY) VII. New stellar and substellar candidate members in the young associations. A&A, 590:A13en_GB
dc.identifier.citationElliott, P. and Bayo, A. (2016). The crucial role of higher-order multiplicity in wide binary formation: A case study using the Beta-Pictoris moving group. MNRAS, 459, 4499-4507en_GB
dc.identifier.urihttp://hdl.handle.net/10871/21876
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.subjectbinaries, star formation, pre-main-sequence stars, multiplicityen_GB
dc.titleIs multiplicity universal? A study of multiplicity in the young moving groupsen_GB
dc.typeThesis or dissertationen_GB
dc.date.available2016-06-07T11:53:30Z
dc.contributor.advisorBaraffe, Isabelle
dc.publisher.departmentPhysicsen_GB
dc.type.degreetitlePhD in Physicsen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnamePhDen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record