Show simple item record

dc.contributor.authorJitprasutwit, S
dc.contributor.authorOng, C
dc.contributor.authorJuntawieng, N
dc.contributor.authorOoi, WF
dc.contributor.authorHemsley, CM
dc.contributor.authorVattanaviboon, P
dc.contributor.authorTitball, RW
dc.contributor.authorTan, P
dc.contributor.authorKorbsrisate, S
dc.date.accessioned2016-06-10T10:16:40Z
dc.date.issued2014-09-12
dc.description.abstractBACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative bacterium widely distributed in soil and water in endemic areas. This soil saprophyte can survive harsh environmental conditions, even in soils where herbicides (containing superoxide generators) are abundant. Sigma factor E (σE) is a key regulator of extra-cytoplasmic stress response in Gram-negative bacteria. In this study, we identified the B. pseudomallei σE regulon and characterized the indirect role that σE plays in the regulation of spermidine, contributing to the successful survival of B. pseudomallei in stressful environments. RESULTS: Changes in the global transcriptional profiles of B. pseudomallei wild type and σE mutant under physiological and oxidative stress (hydrogen peroxide) conditions were determined. We identified 307 up-regulated genes under oxidative stress condition. Comparison of the transcriptional profiles of B. pseudomallei wild type and σE mutant under control or oxidative stress conditions identified 85 oxidative-responsive genes regulated by σE, including genes involved in cell membrane repair, maintenance of protein folding and oxidative stress response and potential virulence factors such as a type VI secretion system (T6SS). Importantly, we identified that the speG gene, encoding spermidine-acetyltransferase, is a novel member of the B. pseudomallei σE regulon. The expression of speG was regulated by σE, implying that σE plays an indirect role in the regulation of physiological level of spermidine to protect the bacteria during oxidative stress. CONCLUSION: This study identified B. pseudomallei genes directly regulated by σE in response to oxidative stress and revealed the indirect role of σE in the regulation of the polyamine spermidine (via regulation of speG) for bacterial cell protection during oxidative stress. This study provides new insights into the regulatory mechanisms by which σE contributes to the survival of B. pseudomallei under stressful conditions.en_GB
dc.description.sponsorshipThis work was supported by the National Science and Technology Development Agency and Siriraj Grant for Research and Development. S. Jitprasutwit was supported by the Royal Golden Jubilee Ph. D. Program (PHD0270/2551).en_GB
dc.identifier.citationVol. 15, article 787en_GB
dc.identifier.doi10.1186/1471-2164-15-787
dc.identifier.urihttp://hdl.handle.net/10871/21974
dc.language.isoenen_GB
dc.publisherBioMed Centralen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/25214426en_GB
dc.rights© Jitprasutwit et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.en_GB
dc.subjectAcetyltransferasesen_GB
dc.subjectBacterial Proteinsen_GB
dc.subjectBurkholderia pseudomalleien_GB
dc.subjectGene Expression Profilingen_GB
dc.subjectGene Expression Regulation, Bacterialen_GB
dc.subjectHydrogen Peroxideen_GB
dc.subjectOxidative Stressen_GB
dc.subjectProtein Foldingen_GB
dc.subjectSigma Factoren_GB
dc.subjectSoil Microbiologyen_GB
dc.subjectSpermidineen_GB
dc.titleTranscriptional profiles of Burkholderia pseudomallei reveal the direct and indirect roles of Sigma E under oxidative stress conditionsen_GB
dc.typeArticleen_GB
dc.date.available2016-06-10T10:16:40Z
exeter.place-of-publicationEngland
dc.descriptionThis is the final version of the article. Available from BioMed Central via the DOI in this record.en_GB
dc.identifier.journalBMC Genomicsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record