Ascorbate-Deficient vtc2 Mutants in Arabidopsis Do Not Exhibit Decreased Growth
Lim, B; Smirnoff, N; Cobbett, CS; et al.Goltz, JF
Date: 13 July 2016
Article
Journal
Frontiers in Plant Science
Publisher
Frontiers Media
Publisher DOI
Abstract
In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis – VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS ...
In higher plants the L-galactose pathway represents the major route for ascorbate biosynthesis. The first committed step of this pathway is catalyzed by the enzyme GDP-L-galactose phosphorylase and is encoded by two paralogs in Arabidopsis – VITAMIN C2 (VTC2) and VTC5. The first mutant of this enzyme, vtc2-1, isolated via an EMS mutagenesis screen, has approximately 20–30% of wildtype ascorbate levels and has been reported to have decreased growth under standard laboratory conditions. Here, we show that a T-DNA insertion into the VTC2 causes a similar reduction in ascorbate levels, but does not greatly affect plant growth. Subsequent segregation analysis revealed the growth defects of vtc2-1 mutants segregate independently of the vtc2-1 mutation. These observations suggest that it is the presence of an independent cryptic mutation that affects growth of vtc2-1 mutants, and not the 70–80% decrease in ascorbate levels that has been assumed in past studies.
Biosciences - old structure
Collections of Former Colleges
Item views 0
Full item downloads 0