Show simple item record

dc.contributor.authorHickey, J
dc.contributor.authorGottsmann, J
dc.contributor.authordel Potro, R
dc.date.accessioned2016-09-19T10:12:22Z
dc.date.issued2013-03
dc.description.abstractThis paper focuses on the driving mechanism behind a 70 km wide region of ground uplift centered on Uturuncu volcano, in the Altiplano-Puna region of southern Bolivia. We present a series of forward models using finite element analysis to simultaneously test for first-order parameters that help constrain a viable model for the observed maximum line of sight uplift rate of 1–2 cm/yr between 1992 and 2006. Stresses from pressure sources with finite geometries are solved numerically, accounting for both homogeneous and heterogeneous mechanical rock properties in elastic and viscoelastic rheologies. Crustal heterogeneity is constrained by seismic velocity data that indicate the presence of a large low-velocity zone, the AltiplanoPuna magma body, at depths of ~17 km below the surface. A viscoelastic rheology is employed to account for time-dependent deformation and an inelastic crust. Comparing homogeneous and heterogeneous models demonstrates the significant impact of a mechanically weak, source-depth layer, which alters surface displacement patterns by buffering subsurface deformation. Elastic model results guide the source parameters tested in the viscoelastic models and demonstrate a range of possible causative source geometries. Our preferred model suggests that pressurization of a magma source extending upward from the Altiplano-Puna magma body is causing the observed surface uplift and alludes to a continued increase in this pressure to explain both the spatial and temporal patterns. We also demonstrate how a pressure-time function plays a first-order role in explaining the observed temporal deformation patternen_GB
dc.description.sponsorshipThis work was supported by the Natural Environmental Research Council (grant NE/G01843X/1), the European Union Framework Program 7 (grant 282759, “VUELCO”) and the Royal Society (University Research Fellowship). We thank Matthew Pritchard, Ciro Del Negro and editor James Tyburczy for their constructive reviewsen_GB
dc.identifier.citationVol. 14, pp. 540 - 555en_GB
dc.identifier.doi10.1002/ggge.20057
dc.identifier.urihttp://hdl.handle.net/10871/23514
dc.language.isoenen_GB
dc.publisherAmerican Geophysical Union (AGU)en_GB
dc.subjectFinite Element Analysisen_GB
dc.subjectUturuncuen_GB
dc.subjectground deformationen_GB
dc.subjectcrustal mechanicsen_GB
dc.subjectvolcanic unresten_GB
dc.titleThe large-scale surface uplift in the Altiplano-Puna region of Bolivia: A parametric study of source characteristics and crustal rheology using finite element analysisen_GB
dc.typeArticleen_GB
dc.date.available2016-09-19T10:12:22Z
dc.identifier.issn1525-2027
dc.descriptionPublisheden_GB
dc.descriptionThis is the final version of the article. Available from the publisher via the DOI in this record.en_GB
dc.identifier.journalGeochemistry, Geophysics, Geosystemsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record