Show simple item record

dc.contributor.authorDufferwiel, S
dc.contributor.authorSchwarz, S
dc.contributor.authorWithers, F
dc.contributor.authorTrichet, AA
dc.contributor.authorLi, F
dc.contributor.authorSich, M
dc.contributor.authorDel Pozo-Zamudio, O
dc.contributor.authorClark, C
dc.contributor.authorNalitov, A
dc.contributor.authorSolnyshkov, DD
dc.contributor.authorMalpuech, G
dc.contributor.authorNovoselov, KS
dc.contributor.authorSmith, JM
dc.contributor.authorSkolnick, MS
dc.contributor.authorKrizhanovskii, DN
dc.contributor.authorTartakovskii, AI
dc.date.accessioned2016-10-24T10:46:43Z
dc.date.issued2015-10-08
dc.description.abstractLayered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room-temperature polaritonic devices based on multiple-quantum-well van der Waals heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realized.en_GB
dc.description.sponsorshipWe thank the financial support of the EPSRC Programme Grant EP/J007544/1 and grant EP/M012727/1, Graphene Flagship, FP7 ITN S3NANO and ERC grant EXCIPOL 320570. O.D.P.-Z. thanks CONACYT-Mexico. A.A.P.T. and J.M.S. acknowledge support from the Leverhulme Trust. F.W. acknowledges support from the Royal Academy of Engineering and K.S.N. from US Army Research Office, the Royal Society and ERC grant Hetero2D. A.N. thanks the support of the EPSRC grant EP/K007173/1. We thank S. Altes for preparing the image of the tunable cavity.en_GB
dc.identifier.citationVol. 6: 8579en_GB
dc.identifier.doi10.1038/ncomms9579
dc.identifier.otherncomms9579
dc.identifier.urihttp://hdl.handle.net/10871/24050
dc.language.isoenen_GB
dc.publisherNature Publishing Groupen_GB
dc.relation.urlhttp://www.ncbi.nlm.nih.gov/pubmed/26446783en_GB
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en_GB
dc.titleExciton-polaritons in van der Waals heterostructures embedded in tunable microcavities.en_GB
dc.typeArticleen_GB
dc.date.available2016-10-24T10:46:43Z
dc.identifier.issn2041-1723
pubs.declined2016-10-21T10:25:55.468+0100
exeter.place-of-publicationEnglanden_GB
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.en_GB
dc.identifier.journalNature Communicationsen_GB
dc.identifier.pmid26446783


Files in this item

This item appears in the following Collection(s)

Show simple item record