dc.description.abstract | The aim of this thesis is to investigate evidence of heating and radiative feedback in local Gould Belt star-forming regions. I discuss what impact, if any, radiative feedback is having on the star formation. I primarily use Submillimeter Common-User Bolometer Array 2 (SCUBA-2) observations from the James Clerk Maxwell Telescope (JCMT) Gould Belt legacy Survey (GBS) of nearby star-forming regions. I analyse this data in conjunction with catalogues of candidate young stellar objects (YSOcs) from mid-infrared surveys with Spitzer IRAC and MIPS surveys. I use the ratio of SCUBA-2 fluxes to calculate dust temperature, given a constant value of dust opacity spectral index, following the method of Reid & Wilson (2005). I employ a two-component beam (2CB) cross convolution to map the temperature of the Serpens MWC 297 region, achieving a resolution of 19.9′′. I employ a convolution kernel to map the temperature of the majority of the JCMT GBS, including the Aquila W40 complex, achieving a resolution of 14.8′′. I use the fellwalker clump finding algorithm to produce a global catalogue of 619 SCUBA-2 850 μm clumps across 26 distinct sub-regions of the JCMT GBS, calculating real temperatures where available. I was the PI of a proposal to observe 12CO 3-2 line emission, with the aim of decontaminating the SCUBA-2 850 μm band. I find 12CO 3-2 line contamination has a significant impact, increasing the dust temperatures calculated per pixel, on average, by 3 K where contamination is less than 10%, and by 16 K where contamination is greater than 10% (in the Aquila W40 complex). I find evidence for 12 outflows in this region, associated with active star formation. I also use archival VLA data to decontaminate both SCUBA-2 bands of free-free emission associated with massive star formation. Where compact free-free sources are sufficiently bright and optically thick, for example the B1.5Ve star MWC 297, their contribution can lead to prominent bright sources at the submillimeter wavelengths detected by SCUBA-2 and lower temperatures around Herbig stars. I present published studies of the Serpens MWC 297 region and the Aquila W40 complex. In both cases I find evidence that the presence of young OB stars is raising the temperatures of nearby clumps. Examining clumps across the JCMT GBS, I find that those clumps isolated from OB stars have a mean temperature of 15±2 K, a value that is consistent with gas temperatures (Friesen et al., 2009) and Bonnor-Ebert sphere models (Kirk et al., 2006). I find no evidence of heating from embedded low-to-medium mass YSOs. Clumps that lie within 3 pc of OB stars have a mean temperature of 21±4 K and O type stars heat clumps over the greatest range. By remodelling the heated clumps with a temperature of 15 K, I calculate that up to 10% of clumps in the JCMT GBS are no longer Jeans unstable, indicating that radiative feedback from OB stars is potentially suppressing fragmentation and allowing for the formation of more massive stars. | en_GB |