Show simple item record

dc.contributor.authorHancock, S
dc.contributor.authorAnderson, K
dc.contributor.authorDisney, M
dc.contributor.authorGaston, KJ
dc.date.accessioned2016-10-31T09:45:11Z
dc.date.issued2016-11-11
dc.description.abstractVegetation structure controls habitat availability, ecosystem services, weather, climate and microclimate, but current landscape scale vegetation maps have lacked details of understorey vegetation and within-canopy structure at resolutions finer than a few tens of metres. In this paper, a novel signal processing method is used to correctly measure 3D voxelised vegetation cover from full-waveform ALS data at 1.5m horizontal and 50 cm vertical resolution, including understorey vegetation and within-canopy structure. A new method for calibrating and validating the instrument specific ALS processing using high resolution TLS data is also presented and used to calibrate and validate the ALS derived data products over a wide range of land cover types within a heterogeneous urban area, including woodland, gardens and streets. This showed the method to accurately retrieve voxelised canopy cover maps with less than 0.4% of voxels containing false negatives, 10% of voxels containing false positives and a canopy cover accuracy within voxels of 24%. The method was applied across 100 km2 and the resulting structure maps were compared to the more widely used discrete return ALS and Gaussian decomposed waveform ALS data products. These products were found to give little information on the within-canopy structure and so are only capable of deriving coarse resolution, plot-scale structure metrics. The detailed 3D canopy maps derived from the new method allow landscape scale ecosystem processes to be examined in more detail than has previously been possible, and the new method reveals details about the canopy understorey, creating opportunities for ecological investigations. The ca ibration method can be applied to any waveform ALS instrument and processing method. All code used in this paper is freely available online through bitbucket (https://bitbucket.org/StevenHancock/voxel lidar)en_GB
dc.description.sponsorshipThis work was funded under the NERC Biodiversity and Ecosystem Services Sustainability (BESS) thematic programme for the Fragments Functions and Flows in Urban Ecosystems project (F3UES; http://bess-urban.group.shef.ac.uk/), grant number NE/J015067/1. The airborne lidar data were acquired by NERC Airborne Research and Survey Facility (ARSF).en_GB
dc.identifier.citationVol. 188, January 2017, pp. 37–50en_GB
dc.identifier.doihttp://dx.doi.org/10.1016/j.rse.2016.10.041
dc.identifier.urihttp://hdl.handle.net/10871/24168
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.relation.urlhttps://bitbucket.org/StevenHancock/voxel lidaren_GB
dc.rights© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
dc.titleMeasurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidaren_GB
dc.typeArticleen_GB
dc.identifier.issn0034-4257
dc.descriptionArticleen_GB
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.
dc.identifier.journalRemote Sensing of Environmenten_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record