Show simple item record

dc.contributor.authorKarwi, QG
dc.contributor.authorBornbaum, J
dc.contributor.authorBoengler, K
dc.contributor.authorTorregrossa, R
dc.contributor.authorWhiteman, M
dc.contributor.authorWood, ME
dc.contributor.authorSchulz, R
dc.contributor.authorBaxter, GF
dc.date.accessioned2016-12-12T09:18:05Z
dc.date.issued2016-12-08
dc.description.abstractBACKGROUND AND PURPOSE: H2 S protects myocardium against ischaemia-reperfusion injury. This protection may involve the cytosolic reperfusion injury salvage kinase (RISK) pathway, but direct effects on mitochondrial function are possible. Here, we investigated the potential cardioprotective effect of mitochondria-specific H2 S donor, AP39, at reperfusion against ischaemia/reperfusion injury. EXPERIMENTAL APPROACH: Anaesthetised rats underwent myocardial (30 min ischaemia/120 min reperfusion) with randomisation to receive interventions prior to reperfusion: vehicle, AP39 (0.01, 0.1, 1 µmol kg(-1) ), or the control compounds AP219 or ADT-OH (1 µmol kg(-1) ). LY294002, L-NAME or ODQ were used to interrogate the involvement of RISK pathway. Myocardial samples harvested 5 minutes after reperfusion were analysed for RISK protein phosphorylation and additional experiments were conducted on isolated cardiac mitochondria to examine the direct mitochondrial effects of AP39. KEY RESULTS: AP39 exerted dose-dependent infarct size limitation. Inhibition of either PI3K/Akt, eNOS or sGC did not affect the infarct limitation of AP39. Western blot analysis confirmed that AP39 did not induce phosphorylation of Akt, eNOS, GSK-3β or ERK1/2. In isolated subsarcolemmal and interfibrillar mitochondria, AP39 significantly attenuated mitochondrial ROS generation without affecting respiratory complexes I or II. Further, AP39 inhibited mitochondrial permeability transition pore (PTP) opening and co-incubation of mitochondria with AP39 and cyclosporine A induced an additive inhibition of PTP. CONCLUSION AND IMPLICATIONS: AP39 protects against reperfusion injury independently of the cytosolic RISK pathway. Cardioprotection could be mediated by inhibiting PTP via cyclophilin D-independent mechanism. Thus, selective delivery of H2 S to mitochondria may be therapeutically applicable for harnessing the cardioprotective utility of H2 S. This article is protected by copyright. All rights reserved.en_GB
dc.description.sponsorshipQK acknowledges the generous support of the Iraqi Ministry of Higher Education and Scientific Research. RT is the recipient of The Brian Ridge Scholarship. MW and MEW would like to thank the Medical Research Council (UK) MR/M022706/1 for their generous support. Authors also thank Elvira Ungefug, Anna Reis, Sabrina Bohme and Christine Hirschhauser for their support.en_GB
dc.identifier.citationAccepted manuscript online: 8 December 2016en_GB
dc.identifier.doi10.1111/bph.13688
dc.identifier.urihttp://hdl.handle.net/10871/24815
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/27930802en_GB
dc.rights.embargoreasonPublisher's policyen_GB
dc.subjecthydrogen sulfideen_GB
dc.subjectischaemia-reperfusionen_GB
dc.subjectmitochondria-targetingen_GB
dc.subjectmyocardial infarctionen_GB
dc.subjectpostconditioningen_GB
dc.subjectreperfusionen_GB
dc.titleAp39, A Mitochondria-Targeting Hydrogen Sulfide (H2 s) Donor, Protects Against Myocardial Reperfusion Injury Independently Of Salvage Kinase Signalling.en_GB
dc.typeArticleen_GB
dc.identifier.issn0007-1188
exeter.place-of-publicationEnglanden_GB
dc.descriptionPublished onlineen_GB
dc.descriptionJournal Articleen_GB
dc.descriptionThis is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.en_GB
dc.identifier.eissn1476-5381
dc.identifier.journalBritish Journal of Pharmacologyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record