Show simple item record

dc.contributor.authorNing, D-Z
dc.contributor.authorZhao, X-L
dc.contributor.authorTeng, B
dc.contributor.authorJohanning, L
dc.date.accessioned2016-12-23T09:17:40Z
dc.date.issued2016-12-21
dc.description.abstractAn analytical model based on linear potential theory is proposed to predict the three-dimensional wave diffraction from a truncated cylinder with an upper porous sidewall and an inner column in the finite water depth. The velocity potential is analytically derived in the whole fluid domain based on the method of variable separation and eigen-function expansion technique. The continuous conditions of pressure and velocity potential are satisfied on the interface between the adjacent sub-domains. Wave forces are calculated directly from the incident and diffracted potentials. The model is validated in comparison with other published results of wave diffraction from a porous bottom-mounted cylinder and impermeable truncated cylinder, respectively. Then the numerical tests are performed to investigate the effects of the porous coefficient G, the draft ratio h/h1 (h and h1 mean the drafts of the porous part and whole cylinder, respectively), the ratio of the inner and outer radii b/a and the water depth d/h1 (d means the water depth) on the wave forces acting on the structure. It is found that, by introducing an upper porous sidewall, the hydrodynamic loads are improved in comparison with the fully impermeable structure, which may be benefit to enhance the survivability of the relating marine structure.en_GB
dc.description.sponsorshipThe authors would like to gratefully acknowledge the financial support from the National Science Foundation of China, China (Grant nos. 51222902, 51490672) and the Program for New Century Excellent Talents in University, China (Grant no. NCET-13-0076).en_GB
dc.identifier.citationVol. 130, pp. 471 - 481en_GB
dc.identifier.doi10.1016/j.oceaneng.2016.11.043
dc.identifier.urihttp://hdl.handle.net/10871/24994
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonPublisher policyen_GB
dc.subjectPotential theory;en_GB
dc.subjectWave diffractionen_GB
dc.subjectPorous structureen_GB
dc.titleWave diffraction from a truncated cylinder with an upper porous sidewall and an inner columnen_GB
dc.typeArticleen_GB
dc.identifier.issn0029-8018
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.en_GB
dc.identifier.journalOcean Engineeringen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record