Show simple item record

dc.contributor.authorVogeler, S
dc.contributor.authorGalloway, TS
dc.contributor.authorIsupov, M
dc.contributor.authorBean, TP
dc.date.accessioned2017-05-05T08:10:13Z
dc.date.issued2017-04-20
dc.description.abstractDisruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates.en_GB
dc.description.sponsorshipThe study was funded by the Centre for Environment, Fisheries and Aquaculture Science (Cefas; https://www.cefas.co.uk) and by the University of Exeter (http://www.exeter.ac.uk).en_GB
dc.identifier.citationVol. 12 (4), article e0176024en_GB
dc.identifier.doi10.1371/journal.pone.0176024
dc.identifier.urihttp://hdl.handle.net/10871/27395
dc.language.isoenen_GB
dc.publisherPublic Library of Scienceen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/28426724en_GB
dc.rightsCopyright: © 2017 Vogeler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_GB
dc.titleCloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicalsen_GB
dc.typeArticleen_GB
dc.date.available2017-05-05T08:10:13Z
exeter.place-of-publicationUnited Statesen_GB
dc.descriptionThis is the final version of the article. Available from Public Library of Science via the DOI in this record.en_GB
dc.identifier.journalPLoS Oneen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record