Nanocomposite fabricated using the toughest caged Inorganic Fullerene-WS2 (IF-WS2) nanoparticles could offer ultimate protection via absorbing shockwaves, however if the IF-WS2 nanomaterials really work, how they behave, and what they experience within the nanocomposites at the right moment of impact have never been investigated ...
Nanocomposite fabricated using the toughest caged Inorganic Fullerene-WS2 (IF-WS2) nanoparticles could offer ultimate protection via absorbing shockwaves, however if the IF-WS2 nanomaterials really work, how they behave, and what they experience within the nanocomposites at the right moment of impact have never been investigated effectively, due to the limitations of existing investigation techniques unable to elucidate the true characteristics of high-speed impacts in composites. We first fabricated Al-matrix model nanocomposites, then unlock the exact roles of IF-WS2 in it at the exact moment of impact, at a time resolution that has never been attempted before, using two in-situ techniques. We find that the presence of IF-WS2 reduced the impact velocity by over 100 m/s and in pressure by at least 2 GPa against those Al and hexagonal WS2 platelet composites, at an impact speed of 1000 m/s. The IF-WS2 composites achieved an intriguing inelastic impact, and outperformed other reference composites, all originating from the ‘balloon-effect’ by absorbing the shockwave pressures. This study not only provided fundamental understanding for the dynamic performance of composites, but also benefit the development of protective nanocomposite engineering.