Show simple item record

dc.contributor.authorRaoult, Nina
dc.date.accessioned2017-10-16T08:02:21Z
dc.date.issued2017-06-30
dc.description.abstractLand-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This thesis describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary productivity (GPP) and latent heat (LE) fluxes. The adJULES system is extended to have the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85% of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter. The results of the calibrations are compared to structural changes and used in a cluster analysis in order to challenge the PFT definitions in JULES. This thesis concludes with simple sensitivity studies which assess how the calibration of JULES has affected the sensitivity of the model to CO2-induced climate change.en_GB
dc.identifier.citationRaoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0, Geosci. Model Dev., 9, 2833-2852, https://doi.org/10.5194/gmd-9-2833-2016, 2016.en_GB
dc.identifier.urihttp://hdl.handle.net/10871/29837
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.subjectdata assimilationen_GB
dc.subjectclimate changeen_GB
dc.subjectland-surface modelen_GB
dc.subjectadjointen_GB
dc.titleCalibration of plant functional type parameters using the adJULES systemen_GB
dc.typeThesis or dissertationen_GB
dc.date.available2017-10-16T08:02:21Z
dc.contributor.advisorJupp, Tim
dc.publisher.departmentMathematicsen_GB
dc.type.degreetitlePhD in Mathematicsen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnamePhDen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record