A holistic scalable implementation approach of the lattice Boltzmann method for CPU/GPU heterogeneous clusters
Riesinger, CR; Bakhtiari, AB; Schreiber, M; et al.Neumann, PN; Bungartz, HJB
Date: 30 November 2017
Article
Journal
Computation
Publisher
MDPI
Publisher DOI
Abstract
Heterogeneous clusters are a widely utilized class of supercomputers assembled from
different types of computing devices, for instance CPUs and GPUs, providing a huge computational
potential. Programming them in a scalable way exploiting the maximal performance introduces
numerous challenges such as optimizations for different ...
Heterogeneous clusters are a widely utilized class of supercomputers assembled from
different types of computing devices, for instance CPUs and GPUs, providing a huge computational
potential. Programming them in a scalable way exploiting the maximal performance introduces
numerous challenges such as optimizations for different computing devices, dealing with multiple
levels of parallelism, the application of different programming models, work distribution, and hiding
of communication with computation. We utilize the lattice Boltzmann method for fluid flow as
a representative of a scientific computing application and develop a holistic implementation for
large-scale CPU/GPU heterogeneous clusters. We review and combine a set of best practices and
techniques ranging from optimizations for the particular computing devices to the orchestration
of tens of thousands of CPU cores and thousands of GPUs. Eventually, we come up with
an implementation using all the available computational resources for the lattice Boltzmann
method operators. Our approach shows excellent scalability behavior making it future-proof for
heterogeneous clusters of the upcoming architectures on the exaFLOPS scale. Parallel efficiencies of
more than 90% are achieved leading to 2,604.72 GLUPS utilizing 24,576 CPU cores and 2,048 GPUs of
the CPU/GPU heterogeneous cluster Piz Daint and computing more than 6.8 · 109
lattice cells.
Computer Science
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0