Show simple item record

dc.contributor.authorDong, Siyi
dc.date.accessioned2017-11-27T08:41:27Z
dc.date.issued2016-11-23
dc.description.abstractAn efficient robustness analysis for the VEGA launch vehicle is essential to minimize the potential system failure during the ascending phase. Monte Carlo sampling method is usually considered as a reliable strategy in industry if the sampling size is large enough. However, due to a large number of uncertainties and a long response time for a single simulation, exploring the entire uncertainties sufficiently through Monte Carlo sampling method is impractical for VEGA launch vehicle. In order to make the robustness analysis more efficient when the number of simulation is limited, the quasi-Monte Carlo(Sobol, Faure, Halton sequence) and heuristic algorithm(Differential Evolution) are proposed. Nevertheless, the reasonable number of samples for simulation is still much smaller than the minimal number of samples for sufficient exploration. To further improve the efficiency of robustness analysis, the redundant uncertainties are sorted out by sensitivity analysis. Only the dominant uncertainties are remained in the robustness analysis. As all samples for simulation are discrete, many uncertainty spaces are not explored with respect to its objective function by sampling or optimization methods. To study these latent information, the meta-model trained by Gaussian Process is introduced. Based on the meta-model, the expected maximum objective value and expected sensitivity of each uncertainties can be analyzed for robustness analysis with much higher efficiency but without loss much accuracy .en_GB
dc.identifier.urihttp://hdl.handle.net/10871/30469
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.rights.embargoreasonWe are now writing a paper and would like to publish our work on 2018. Before the publication, the thesis should be embargoed.en_GB
dc.rightsThis thesis can only be able to release to the public after we publish our work in 2018. We are now in the stage of writing a journal paper.en_GB
dc.subjectrobustness analysisen_GB
dc.subjectquasi-Monte Carloen_GB
dc.subjectprobabilistic global optimizationen_GB
dc.subjectprobability sensitivity analysisen_GB
dc.titleRobustness analysis of VEGA launcher model based on effective sampling strategyen_GB
dc.typeThesis or dissertationen_GB
dc.contributor.advisorMenon, Prathyush
dc.publisher.departmentCollege of Engineering, Mathematics and Physical Sciencesen_GB
dc.type.degreetitlePhD in Mathematicsen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnamePhDen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record