Faster turnover of new soil carbon inputs under increased atmospheric CO2
van Groenigen, KJ; Osenberg, CW; Terrer, C; et al.Carrillo, Y; Dijkstra, FA; Heath, J; Nie, M; Pendall, E; Phillips, RP; Hungate, BA
Date: 8 May 2017
Journal
Global Change Biology
Publisher
Wiley
Publisher DOI
Related links
Abstract
Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the ...
Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed.
Geography - old structure
Collections of Former Colleges
Item views 0
Full item downloads 0
Related items
Showing items related by title, author, creator and subject.
-
Latest Permian carbonate carbon isotope variability traces heterogeneous organic carbon accumulation and authigenic carbonate formation
Schobben, M; van de Velde, S; Gliwa, J; et al. (European Geosciences Union (EGU) / Copernicus Publications, 22 November 2017)Bulk-carbonate carbon isotope ratios are a widely applied proxy for investigating the ancient biogeochemical carbon cycle. Temporal carbon isotope trends serve as a prime stratigraphic tool, with the inherent assumption ... -
Integrated ocean carbon research: a summary of ocean carbon research, and vision of coordinated ocean carbon research and observations for the next decade
Arico, S; Arietta, JM; Bakker, DCE; et al. (UNESCO, 30 April 2021) -
Bleaching impacts on carbonate production in the Chagos Archipelago: influence of functional coral groups on carbonate budget trajectories
Lange, I; Perry, CT (Springer Verlag, 5 March 2019)Reefs in the remote Chagos Archipelago (central Indian Ocean) were severely affected by sea-surface temperature warming and coral bleaching in 2015-2016. Here we assess the impacts of this event on community composition ...