Modification of Graphene for Applications in Optoelectronic Devices
Jones, Gareth Francis
Date: 22 September 2017
Publisher
University of Exeter
Degree Title
PhD in Physics
Abstract
In this thesis, we investigate how the optical and electronic properties of graphene may be modified in proximity to various other materials. We present several examples of how modification in this way can help make graphene better suited for specific device applications. We develop a method of up-scaling the fabrication of FeCl3-intercalated ...
In this thesis, we investigate how the optical and electronic properties of graphene may be modified in proximity to various other materials. We present several examples of how modification in this way can help make graphene better suited for specific device applications. We develop a method of up-scaling the fabrication of FeCl3-intercalated few-layer graphene from micron-sized flakes to macroscopic films so that it may be used as a transparent electrode in flexible light-emitting devices. We also find that photo-responsive junctions can be arbitrarily written into FeCl3-intercalated few-layer
graphene by means of optical lithography. These junctions produce photocurrent signals that are directly proportional to incident optical power over an extended range compared to other graphene photodetectors. Through theoretical analysis of these junctions, we conclude that the enhanced cooling of hot carriers with lattice phonons is responsible for this behaviour. Finally, we trial rubrene single crystals as the light-absorbing layer in a graphene phototransistor. We find that rubrene single crystal-graphene interfaces exhibit enhanced charge transfer efficiencies under illumination with extremely weak light signals. Through a comparative study with similar devices, we conclude that the wide variation in sensitivity amongst graphene phototransistors is largely due to extraneous factors relating to device geometry and measurement conditions.
Doctoral Theses
Doctoral College
Item views 0
Full item downloads 0