Show simple item record

dc.contributor.authorBertani, G
dc.contributor.authorWagner, FH
dc.contributor.authorAnderson, LO
dc.contributor.authorAragão, LEOC
dc.date.accessioned2018-02-19T09:45:05Z
dc.date.issued2017-12-08
dc.description.abstractAmazonia is theworld largest tropical forest, playing a key role in the global carbon cycle. Thus, understanding climate controls of photosynthetic activity in this region is critical. The establishment of the relationship between photosynthetic activity and climate has been controversial when based on conventional remote sensing-derived indices. Here, we use nine years of solar-induced chlorophyll fluorescence (ChlF) data from the Global Ozone Monitoring Experiment (GOME-2) sensor, as a direct proxy for photosynthesis, to assess the seasonal response of photosynthetic activity to solar radiation and precipitation in Amazonia. Our results suggest that 76% of photosynthesis seasonality in Amazonia is explained by seasonal variations of solar radiation. However, 13% of these forests are limited by precipitation. The combination of both radiation and precipitation drives photosynthesis in the remaining 11% of the area. Photosynthesis tends to rise only after radiation increases in 61% of the forests. Furthermore, photosynthesis peaks in the wet season in about 58% of the Amazon forest. We found that a threshold of ≈1943 mm per year can be defined as a limit for precipitation phenological dependence. With the potential increase in the frequency and intensity of extreme droughts, forests that have the photosynthetic process currently associated with radiation seasonality may shift towards a more water-limited system.en_GB
dc.description.sponsorshipWe gratefully acknowledge the CAPES and FAPESP (Grants No. 13/14520-6 and No. 2013/50533-5) agencies for providing research fellowships and support this work. L.O.A and L.E.O.C.A thank the National Council for Scientific and Technological Development (CNPq), for the productivity fellowship, processes number 309247/2016-0 and 305054/2016-3, respectively. F.H.W. have been funded by the FAPESP (process number 13/14520-6, process number 15/50484-0 and process number 16/17652-9).en_GB
dc.identifier.citationVol. 9 (12), 1275en_GB
dc.identifier.doi10.3390/rs9121275
dc.identifier.urihttp://hdl.handle.net/10871/31555
dc.language.isoenen_GB
dc.publisherMDPIen_GB
dc.rights© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectclimate seasonalityen_GB
dc.subjectphotosynthesisen_GB
dc.subjectChlFen_GB
dc.subjectGOME-2en_GB
dc.subjectGLDASen_GB
dc.titleChlorophyll fluorescence data reveals climate-related photosynthesis seasonality in Amazonian forestsen_GB
dc.typeArticleen_GB
dc.date.available2018-02-19T09:45:05Z
dc.identifier.issn2072-4292
dc.descriptionThis is the final version of the article. Available from MDPI via the DOI in this record.en_GB
dc.identifier.journalRemote Sensingen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record