Show simple item record

dc.contributor.authorAndrukhova, O
dc.contributor.authorZhang, J
dc.contributor.authorAlessi, D
dc.contributor.authorErben, R
dc.date.accessioned2018-04-04T10:10:14Z
dc.date.issued2016-05-01
dc.description.abstractPseudohypoaldosteronism type II (PHAII) is a hereditary disease characterized by hypertension, hypercalciuria and osteopenia. PHAII is caused by mutations in with-no-lysine kinase 1 (WNK1), WNK4, or the cullin RING ligase family members kelch-like 3 (KLHL3) or cullin 3 (CUL3). All mutations result in up-regulation of the WNK signalling pathway which activates thiazide-sensitive Na-Cl cotransporters (NCC) in renal distal tubules, leading to salt retention and hypertension in PHAII. The mechanism underlying hypercalciuria in PHAII is unknown. To better understand the mechanisms leading to osteopenia in PHAII, we used KLHL3R528H/+ knock-in mice carrying the same mutation as some PHAII patients. As expected, KLHL3R528H/+ mutants exhibited hyperkalemia, hypernatremia, renal calcium wasting and increased phosphorylation of NCC in the kidney. Furthermore, KLHL3R528H/+ mutants showed elevated serum parathyroid hormone (PTH), increased bone resorption as demonstrated by elevated urinary collagen crosslinks excretion and increased osteoclast numbers in femoral cancellous bone, and reduced distal femoral cancellous bone BMD and volume as evidenced by pQCT and μCT analysis. Analysis of the expression of proteins involved in renal calcium transport revealed elevated membrane abundance of the fully glycosylated epithelial calcium channel TRPV5, decreased TRPV6 abundance, and unchanged calbindin D28k expression in KLHL3R528H/+ mutants. In contrast to the upregulated TRPV5 protein expression, TRPV5 phosphorylation was reduced in KLHL3R528H/+ mutants, suggesting downregulated TRPV5 activity. In line with a crosstalk between NCC activity and PTH-mediated TRPV5 activation, we found by 2-photon microscopy that the PTH-mediated increase in Ca2+ uptake in mouse distal tubular mpkDCT4 cells was enhanced by the NCC blocker chlorothiazide or by knockout of NCC. Taken together, our study provides a mechanistic explanation for the hypercalciuria and bone loss found in PHAII patients: elevated NCC activity in KLHL3R528H/+ mice blocks PTH-mediated TRPV5 activation, leading to renal PTH resistance with subsequent renal Ca wasting and a counter-regulatory PTH-induced bone loss.en_GB
dc.identifier.citationVol. 5, P90en_GB
dc.identifier.doi10.1530/boneabs.5.OP30
dc.identifier.urihttp://hdl.handle.net/10871/32307
dc.language.isoenen_GB
dc.publisherBioScientificaen_GB
dc.titleBone loss in KLHL3 knock-in mice characterized by a pseudohypoaldosteronism type II-like phenotype is mediated by renal PTH resistanceen_GB
dc.typePresentationen_GB
dc.date.available2018-04-04T10:10:14Z
dc.descriptionThis is the final versionen_GB
dc.descriptionPoster presented at the 43rd Annual European Calcified Tissue Society Congress, Rome, Italy, 14 - 17 May 2016en_GB
dc.identifier.journalBone Abstractsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record