Show simple item record

dc.contributor.authorMustafa, Wail
dc.contributor.authorPugeault, N
dc.contributor.authorBuch, Anders Glent
dc.contributor.authorKrüger, Norbert
dc.date.accessioned2016-02-05T10:46:53Z
dc.date.accessioned2018-04-24T11:02:01Z
dc.date.issued2015-06-23
dc.description.abstractWe present a fast object recognition system coding shape by viewpoint invariant geometric relations and appearance information. In our advanced industrial work-cell, the system can observe the work space of the robot by three pairs of Kinect and stereo cameras allowing for reliable and complete object information. From these sensors, we derive global viewpoint invariant shape features and robust color features making use of color normalization techniques. We show that in such a set-up, our system can achieve high performance already with a very low number of training samples, which is crucial for user acceptance and that the use of multiple views is crucial for performance. This indicates that our approach can be used in controlled but realistic industrial contexts that require—besides high reliability—fast processing and an intuitive and easy use at the end-user side.en_GB
dc.description.sponsorshipEuropean Unionen_GB
dc.description.sponsorshipDanish Council for Strategic Researchen_GB
dc.identifier.citationPublished online: 23 June 2015en_GB
dc.identifier.doi10.1017/S0263574715000430
dc.identifier.grantnumberFP7-ICT-270273en_GB
dc.identifier.urihttp://hdl.handle.net/10871/32589
dc.language.isoenen_GB
dc.publisherCambridge University Pressen_GB
dc.relation.replaceshttp://hdl.handle.net/10871/19618
dc.relation.replaces10871/19618
dc.rights© Cambridge University Press 2016en_GB
dc.titleMulti-View Object Instance Recognition in an Industrial Contexten_GB
dc.typeArticleen_GB
dc.date.available2016-02-05T10:46:53Z
dc.date.available2018-04-24T11:02:01Z
dc.identifier.issn0263-5747
dc.identifier.eissn1469-8668
dc.identifier.journalRoboticaen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record