Show simple item record

dc.contributor.authorWilliams, EA
dc.contributor.authorConzelmann, M
dc.contributor.authorJékely, G
dc.date.accessioned2018-05-14T14:06:58Z
dc.date.issued2015-01-07
dc.description.abstractBACKGROUND: During larval settlement and metamorphosis, marine invertebrates undergo changes in habitat, morphology, behavior and physiology. This change between life-cycle stages is often associated with a change in diet or a transition between a non-feeding and a feeding form. How larvae regulate changes in feeding during this life-cycle transition is not well understood. Neuropeptides are known to regulate several aspects of feeding, such as food search, ingestion and digestion. The marine annelid Platynereis dumerilii has a complex life cycle with a pelagic non-feeding larval stage and a benthic feeding postlarval stage, linked by the process of settlement. The conserved neuropeptide myoinhibitory peptide (MIP) is a key regulator of larval settlement behavior in Platynereis. Whether MIP also regulates the initiation of feeding, another aspect of the pelagic-to-benthic transition in Platynereis, is currently unknown. RESULTS: Here, we explore the contribution of MIP to the regulation of feeding behavior in settled Platynereis postlarvae. We find that in addition to expression in the brain, MIP is expressed in the gut of developing larvae in sensory neurons that densely innervate the hindgut, the foregut, and the midgut. Activating MIP signaling by synthetic neuropeptide addition causes increased gut peristalsis and more frequent pharynx extensions leading to increased food intake. Conversely, morpholino-mediated knockdown of MIP expression inhibits feeding. In the long-term, treatment of Platynereis postlarvae with synthetic MIP increases growth rate and results in earlier cephalic metamorphosis. CONCLUSIONS: Our results show that MIP activates ingestion and gut peristalsis in Platynereis postlarvae. MIP is expressed in enteroendocrine cells of the digestive system suggesting that following larval settlement, feeding may be initiated by a direct sensory-neurosecretory mechanism. This is similar to the mechanism by which MIP induces larval settlement. The pleiotropic roles of MIP may thus have evolved by redeploying the same signaling mechanism in different aspects of a life-cycle transition.en_GB
dc.description.sponsorshipThe research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/European Research Councilen_GB
dc.identifier.citationVol. 12: 1en_GB
dc.identifier.doi10.1186/s12983-014-0093-6
dc.identifier.urihttp://hdl.handle.net/10871/32848
dc.language.isoenen_GB
dc.publisherBioMed Centralen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/25628752en_GB
dc.rights© 2015 Williams et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.en_GB
dc.titleMyoinhibitory peptide regulates feeding in the marine annelid Platynereisen_GB
dc.typeArticleen_GB
dc.date.available2018-05-14T14:06:58Z
dc.identifier.issn1742-9994
exeter.place-of-publicationEnglanden_GB
dc.descriptionThis is the final version of the article. Available from the publisher via the DOI in this record.en_GB
dc.identifier.journalFrontiers in Zoologyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record