Show simple item record

dc.contributor.authorDominy, SC
dc.contributor.authorO'Connor, L
dc.contributor.authorGlass, HJ
dc.contributor.authorPurevgerel, S
dc.contributor.authorXie, Y
dc.date.accessioned2018-05-30T13:03:33Z
dc.date.issued2018-05-04
dc.description.abstractWhen developing a process flowsheet, the risks in achieving positive financial outcomes are minimised by ensuring representative metallurgical samples and high quality testwork. The quality and type of samples used are as important as the testwork itself. The key characteristic required of any set of samples is that they represent a given domain and quantify its variability. There are those who think that stating a sample(s) is representative makes it representative without justification. There is a need to consider both (1) in-situ and (2) testwork sub-sample representativity. Early ore/waste characterisation and domain definition are required, so that sampling and testwork protocols can be designed to suit the style of mineralisation in question. The Theory of Sampling (TOS) provides an insight into the causes and magnitude of errors that may occur during the sampling of particulate materials (e.g., broken rock) and is wholly applicable to metallurgical sampling. Quality assurance/quality control (QAQC) is critical throughout all programmes. Metallurgical sampling and testwork should be fully integrated into geometallurgical studies. Traditional metallurgical testwork is critical for plant design and is an inherent part of geometallurgy. In a geometallurgical study, multiple spatially distributed small-scale tests are used as proxies for process parameters. These will be validated against traditional testwork results. This paper focusses on sampling and testwork for gold recovery determination. It aims to provide the reader with the background to move towards the design, implementation and reporting of representative and fit-for-purpose sampling and testwork programmes. While the paper does not intend to provide a definitive commentary, it critically assesses the hard-rock sampling methods used and their optimal collection and preparation. The need for representative sampling and quality testwork to avoid financial and intangible losses is emphasiseden_GB
dc.identifier.citationVol. 8 (5), article 193en_GB
dc.identifier.doi10.3390/min8050193
dc.identifier.urihttp://hdl.handle.net/10871/33011
dc.language.isoenen_GB
dc.publisherMDPIen_GB
dc.rights© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectmetallurgical samplingen_GB
dc.subjectmetallurgical testworken_GB
dc.subjectgeometallurgyen_GB
dc.subjectgold mineralisationen_GB
dc.subjectrepresentative samplingen_GB
dc.subjectTheory of Samplingen_GB
dc.subjectquality assuranceen_GB
dc.subjectquality controlen_GB
dc.titleTowards Representative Metallurgical Sampling and Gold Recovery Testwork Programmesen_GB
dc.typeArticleen_GB
dc.date.available2018-05-30T13:03:33Z
dc.identifier.issn2075-163X
dc.descriptionThis is the final version of the article. Available from MDPI via the DOI in this record.en_GB
dc.identifier.journalMineralsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record