Show simple item record

dc.contributor.authorProust, J-N
dc.contributor.authorPouderoux, H
dc.contributor.authorAndo, H
dc.contributor.authorHesselbo, SP
dc.contributor.authorHodgson, DM
dc.contributor.authorLofi, J
dc.contributor.authorRabineau, M
dc.contributor.authorSugarman, PJ
dc.date.accessioned2018-06-18T08:19:37Z
dc.date.issued2018-06-14
dc.description.abstractUnderstanding the history, causes, and impact of sea-level changes is a challenge for our societies that face accelerated global sea-level rise. In this context, improvement of our knowledge of sea-level changes and shoreline migration at geological time scales is critical. The preserved, laterally correlative sedimentary record of continental erosion on passive margins has been used to reconstruct past sea level. However, the detailed nature of a basic clinothem progradational pattern observed on many of these margins is still poorly known. This paper describes the sedimentary facies and interprets the depositional environments and the architecture of the clinothems of the New Jersey shelf (offshore northeastern USA) to depict the origin and controls of the distribution of the sediment on the margin. We analyze 612 cores totaling 1311 m in length collected at three sites 60 km offshore Atlantic City, New Jersey, during International Ocean Discovery Program–International Continental Scientific Drilling Program (IODP-ICDP) Expedition 313. The three sites sampled the lower to middle Miocene passive margin sediments of the New Jersey shelf clinothems. We also collected wireline logs at the three sites and tied the sedimentary architecture to the geometry observed on seismic profiles. The observed sediment distribution in the clinoform complex differs from that of current models based on seismic data, which predict a progressive increase in mud and decrease in sand contents in a seaward direction. In contrast, we observe that the clinoforms are largely composed of muds, with sands and coarser material concentrated at the rollover, the bottomset, and the toe of the slope. The shelf clinothem topsets are storm-influenced mud whereas the foreset slope is composed of a mud wedge largely dominated by density current deposits (e.g., low-density turbidites and debrites). The architecture of the clinothem complex includes a composite stack of ~30-m-thick clinothem units each made up of four systems tracts (Transgressive, Highstand, Forced- Regressive, and Lowstand Systems Tract) building individual transgressiveregressive sequences. The presence of mud-rich facies deposited during highstands on the topset of the clinoform, 40–60 km offshore from the sand-prone shoreface deposit (observed in the New Jersey onshore delta plain), and the lack of subaerial erosion (and continental depositional environments) point to a depositional model involving a subaerial delta (onshore) feeding a distant subaqueous delta. During forced regressions, shelf-edge deltas periodically overstep the stacks of flood-influenced, offshore-marine mud wedges of the New Jersey subaqueous delta, bringing sand to the rollover and building up the large-scale shelf-prism clinothems. The clinothem complex develops on a gently dipping platform with a ramp-like morphology (apparent dip of 0.75°–0.5°) below mean storm wave base, in 30–50 m of water depth, 40– 60 km seaward of the coastal area. Its shape depends on the balance between accommodation and sedimentation rates. Subaqueous deltas show higher accumulation rates than their subaerial counterparts and prograde three times further and faster than their contemporaneous shoreline. The increase in the intensity of waves (height and recurrence intervals) favors the separation between subaqueous and subaerial deltas, and as a consequence, the formation of a flat topset geometry, a decrease in flood events and fluvial discharge, an overall progressive decrease in sediment grain size (from sequence m5.45, ca. 17.8–17.7 Ma, onwards), as well as an increase in sedimentation rates on the foresets of the clinoforms. All of these are recognized as preliminary signals that might characterize the entry into the Neogene icehouse world.en_GB
dc.description.sponsorshipThe research was supported by the CNRS-Institut National des Sciences de l’Univers 2010 Post-Campagne Research Program and a CNRS-IODP France postdoctoral grant A64622 to Hugo Pouderoux. We acknowledge funding from NERC (NE/F001428/1) to Hesselbo, and NERC (NE/H014306/1) to Hodgson.en_GB
dc.identifier.citationVol. 14 (4)en_GB
dc.identifier.doi10.1130/GES01545.1
dc.identifier.urihttp://hdl.handle.net/10871/33240
dc.language.isoenen_GB
dc.publisherGeological Society of Americaen_GB
dc.rights© The Authors 2018. Gold Open Access: This paper is published under the terms of the CC-BY-NC license.en_GB
dc.titleFacies architecture of Miocene subaqueous clinothems of the New Jersey passive margin: Results from IODP-ICDP Expedition 313en_GB
dc.typeArticleen_GB
dc.date.available2018-06-18T08:19:37Z
dc.descriptionThis is the final version of the article. Available from the Geological Society of America via the DOI in this record.en_GB
dc.identifier.eissn1553-040X
dc.identifier.journalGeosphereen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record