Hydrodynamic controls on alluvial ridge construction and avulsion likelihood in meandering river floodplains
Nicholas, A; Aalto, R; Sambrook Smith, G; et al.Schwendel, A
Date: 12 June 2018
Journal
Geology
Publisher
Geological Society of America
Publisher DOI
Abstract
Existing models of alluvial stratigraphy often neglect the hydrodynamic controls on channel belt and floodplain sedimentation, and predict avulsion using topographic metrics, such as channel belt super-elevation (the ratio of alluvial ridge height to channel depth). This study provides a first demonstration of the potential for simulating ...
Existing models of alluvial stratigraphy often neglect the hydrodynamic controls on channel belt and floodplain sedimentation, and predict avulsion using topographic metrics, such as channel belt super-elevation (the ratio of alluvial ridge height to channel depth). This study provides a first demonstration of the potential for simulating long-term river floodplain evolution (over >500 floods) using a process-based hydrodynamic model. Simulations considered alluvial ridge construction during the period leading up to an avulsion, and assess the controls on avulsion likelihood. Results illustrate that the balance between within-channel and overbank sedimentation exerts a key control on both super-elevation ratios and on the conveyance of water and sediment to the floodplain. Rapid overbank sedimentation creates high alluvial ridges with deep channels, leading to lower apparent super-elevation ratios, and implying a reduced likelihood of avulsion. However, channel deepening also drives a reduction in channel belt–floodplain connectivity, so that conveyance of water to the distal floodplain is concentrated in a declining number of channel breaches, which may favor avulsion. These results suggest that, while super-elevation ratios in excess of a threshold value may be a necessary condition for a meandering river avulsion, the likelihood of avulsion may not be greatest where the super-elevation ratio is maximized. Instead, optimal conditions for avulsion may depend on channel-floodplain hydrodynamic connectivity, determined by the balance between coarse (channel bed–forming) and fine (floodplain-constructing) sediment delivery. These results highlight a need to rethink the representation of avulsion in existing models of alluvial architecture.
Geography - old structure
Collections of Former Colleges
Item views 0
Full item downloads 0