Show simple item record

dc.contributor.authorLopez-Sangil, L
dc.contributor.authorHartley, IP
dc.contributor.authorRovira, P
dc.contributor.authorCasals, P
dc.contributor.authorSayer, EJ
dc.date.accessioned2018-06-25T08:58:16Z
dc.date.issued2018-06-07
dc.description.abstractDrought is becoming more common globally and has the potential to alter patterns of soil carbon (C) storage in terrestrial ecosystems. After an extended dry period, a pulse of soil CO 2 release is commonly observed upon rewetting (the so-called ‘Birch effect’), the magnitude of which depends on soil rewetting frequency. But the source and implications of this CO 2 efflux are unclear. We used a mesocosm field experiment to subject agricultural topsoil to two distinct drying and rewetting frequencies, measuring Birch effects (as 3-day cumulative CO 2 efflux upon rewetting) and the overall CO 2 efflux over the entire drying-rewetting cycle. We used 14 C-labelled wheat straw to determine the contribution of fresh (recently incorporated) plant litter or extant soil organic matter (SOM) to these fluxes, and assessed the extent to which the amount of soil microbial biomass + K 2 SO 4 -extractable organic C (fumigated-extracted C, FEC) before rewetting determined the magnitude of Birch effect CO 2 pulses. Our results showed a gradual increase in SOM-derived organic solutes within the FEC fraction, and a decrease in soil microbial biomass, under more extreme drying and rewetting conditions. But, contrary to our hypothesis, pre-wetting levels of FEC were not related to the magnitude of the Birch effects. In the longer term, rewetting frequency and temperature influenced the overall (31-day cumulative) amount of CO 2 –C released from SOM upon rewetting, but the overall 14 CO 2 –C respired from fresh straw was only influenced by the rewetting frequency, with no effect of seasonal temperature differences of ∼15 °C. We conclude that the mineralization of fresh plant litter in soils is more sensitive to water limitations than extant SOM in soils under drying-rewetting conditions. Moreover, we found little evidence to support the hypothesis that the availability of microbial and soluble organic C before rewetting determined the magnitude of the Birch effects, and suggest that future work should investigate whether these short-term CO 2 pulses are predominantly derived from substrate-supply mechanisms resulting from the disruption of the soil organo-mineral matrix.en_GB
dc.description.sponsorshipThis study was partially funded by the Spanish Research Agency (MEC: VULCA, CGL2005-08133-CO2). Luis Lopez-Sangil had a pre-doctoral fellowship (APIF 2008–2012; 00154) from the University of Barcelona, and was granted with a short-stay fellowship at the University of Exeter by the ESF-funded MOLTER program. Both Pere Rovira and Pere Casals have a I3 post-doctoral grant from the Spanish Ministry of Science and Innovation. E. J. Sayer was supported by a European Research Council Starting Grant under the European Union's Seventh Framework Programme (FP/2007–2013; ERC Grant Agreement No. 307888).en_GB
dc.identifier.citationVol. 124, pp. 81 - 89en_GB
dc.identifier.doi10.1016/j.soilbio.2018.06.001
dc.identifier.urihttp://hdl.handle.net/10871/33283
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 7 June 2019 in compliance with publisher policy.en_GB
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dc.subjectSoil carbonen_GB
dc.subjectBirch effecten_GB
dc.subjectRewetting frequencyen_GB
dc.subjectDroughten_GB
dc.subjectFumigation-extractionen_GB
dc.subjectLitter decompositionen_GB
dc.titleDrying and rewetting conditions differentially affect the mineralization of fresh plant litter and extant soil organic matteren_GB
dc.typeArticleen_GB
dc.identifier.issn0038-0717
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.en_GB
dc.identifier.journalSoil Biology and Biochemistryen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record