Show simple item record

dc.contributor.authorBártulos, CR
dc.contributor.authorRogers, MB
dc.contributor.authorWilliams, TA
dc.contributor.authorGentekaki, E
dc.contributor.authorBrinkmann, H
dc.contributor.authorCerff, R
dc.contributor.authorLiaud, M-F
dc.contributor.authorHehl, AB
dc.contributor.authorYarlett, NR
dc.contributor.authorGruber, A
dc.contributor.authorKroth, PG
dc.contributor.authorvan der Giezen, M
dc.date.accessioned2018-10-01T13:12:28Z
dc.date.issued2018-07-30
dc.description.abstractThe establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by the bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.en_GB
dc.description.sponsorshipTAW is supported by a Royal Society University Research Fellowship and NERC grant NE/P00251X/1. Work in the lab of MvdG was supported by Wellcome Trust grant 078566/A/05/Z. PGK wishes to acknowledge support by the German Research Foundation (DFG, grant KR 1661/6-1) and the Gordon and Betty Moore Foundation GBMF 4966 (grant DiaEdit).en_GB
dc.identifier.citationPublished online 30 July 2018en_GB
dc.identifier.doi10.1093/gbe/evy164
dc.identifier.urihttp://hdl.handle.net/10871/34162
dc.language.isoenen_GB
dc.publisherOxford University Press (OUP) for Society for Molecular Biology and Evolutionen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/30060189en_GB
dc.rights© The Author(s) 2018. . Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en_GB
dc.subjectglycolysisen_GB
dc.subjectmitochondriaen_GB
dc.subjectorganelleen_GB
dc.subjectstramenopileen_GB
dc.subjectevolutionen_GB
dc.subjectcompartmentalisationen_GB
dc.titleMitochondrial glycolysis in a major lineage of eukaryotesen_GB
dc.typeArticleen_GB
dc.date.available2018-10-01T13:12:28Z
exeter.place-of-publicationEnglanden_GB
dc.descriptionThis is the author accepted manuscript. The final version is freely available from OUP via the DOI in this recorden_GB
dc.identifier.journalGenome Biology and Evolutionen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record