Show simple item record

dc.contributor.authorStyga, JM
dc.contributor.authorHouslay, T
dc.contributor.authorWilson, A
dc.contributor.authorEarley, RL
dc.date.accessioned2018-10-08T13:35:54Z
dc.date.issued2018-10-16
dc.description.abstractHeritable variation in, and genetic correlations among, traits determine the response of multivariate phenotypes to natural selection. However, as traits develop over ontogeny, patterns of genetic (co)variation and integration captured by the G matrix may also change. Despite this, few studies have investigated how genetic parameters underpinning multivariate phenotypes change as animals pass through major life history stages. Here, using a self-fertilizing hermaphroditic fish species, mangrove rivulus (Kryptolebias marmoratus), we test the hypothesis that G changes from hatching through reproductive maturation. We also test Cheverud’s conjecture by asking whether phenotypic patterns provide an acceptable surrogate for patterns of genetic (co)variation within and across ontogenetic stages. For a set of morphological traits linked to locomotor (jumping) performance, we find that the overall level of genetic integration (as measured by the mean-squared correlation across all traits) does not change significantly over ontogeny. However, we also find evidence that some trait-specific genetic variances and pairwise genetic correlations do change. Ontogenetic changes in G indicate the presence of genetic variance for developmental processes themselves, while also suggesting that any genetic constraints on morphological evolution may be age-dependent. Phenotypic correlations closely resembled genetic correlations at each stage in ontogeny. Thus, our results are consistent with the premise that – at least under common environment conditions - phenotypic correlations can be a good substitute for genetic correlations in studies of multivariate developmental evolution.en_GB
dc.identifier.citationPublished online 16 October 2018.en_GB
dc.identifier.doi10.1038/s41437-018-0152-4
dc.identifier.urihttp://hdl.handle.net/10871/34226
dc.language.isoenen_GB
dc.publisherSpringer Natureen_GB
dc.rights.embargoreasonUnder embargo until 16 April 2019 in compliance with publisher policy.en_GB
dc.rights© The Genetics Society 2018.
dc.subjectG-matrixen_GB
dc.subjectgenetic integrationen_GB
dc.subjectontogenyen_GB
dc.subjectKryptolebiasen_GB
dc.titleDevelopment of G: A test in an amphibious fishen_GB
dc.typeArticleen_GB
dc.identifier.issn0018-067X
dc.descriptionThis is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.en_GB
dc.descriptionThe data used in this manuscript has been achieved in Dryad repository: doi:10.5061/dryad.m56pj5b.en_GB
dc.identifier.journalHeredityen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record