Show simple item record

dc.contributor.authorHumphrey, V
dc.contributor.authorZscheischler, J
dc.contributor.authorCiais, P
dc.contributor.authorGudmundsson, L
dc.contributor.authorSitch, S
dc.contributor.authorSeneviratne, SI
dc.date.accessioned2018-10-25T09:54:05Z
dc.date.issued2018-08-29
dc.description.abstractLand ecosystems absorb on average 30 per cent of anthropogenic carbon dioxide (CO2) emissions, thereby slowing the increase of CO2 concentration in the atmosphere1. Year-to-year variations in the atmospheric CO2 growth rate are mostly due to fluctuating carbon uptake by land ecosystems1. The sensitivity of these fluctuations to changes in tropical temperature has been well documented2-6, but identifying the role of global water availability has proved to be elusive. So far, the only usable proxies for water availability have been time-lagged precipitation anomalies and drought indices3-5, owing to a lack of direct observations. Here, we use recent observations of terrestrial water storage changes derived from satellite gravimetry7 to investigate terrestrial water effects on carbon cycle variability at global to regional scales. We show that the CO2 growth rate is strongly sensitive to observed changes in terrestrial water storage, drier years being associated with faster atmospheric CO2 growth. We demonstrate that this global relationship is independent of known temperature effects and is underestimated in current carbon cycle models. Our results indicate that interannual fluctuations in terrestrial water storage strongly affect the terrestrial carbon sink and highlight the importance of the interactions between the water and carbon cycles.en_GB
dc.description.sponsorshipThis research was funded by the European Research Council DROUGHT-HEAT project (contract 617518). P.C. was supported by the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P.en_GB
dc.identifier.citationVol. 560, pp. 628 - 631en_GB
dc.identifier.doi10.1038/s41586-018-0424-4
dc.identifier.urihttp://hdl.handle.net/10871/34439
dc.language.isoenen_GB
dc.publisherSpringer Natureen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/30158603en_GB
dc.rights.embargoreasonUnder embargo until 28 February 2019 in compliance with publisher policyen_GB
dc.rights© 2018 Springer Nature Limited. All rights reserveden_GB
dc.titleSensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storageen_GB
dc.typeArticleen_GB
exeter.place-of-publicationEnglanden_GB
dc.descriptionThis is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recorden_GB
dc.descriptionAll datasets supporting the results of this paper are openly accessible from the references listed in Supplementary Table 1.en_GB
dc.identifier.journalNatureen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record