Show simple item record

dc.contributor.authorAtkinson, S
dc.contributor.authorThomas, SF
dc.contributor.authorGoddard, P
dc.contributor.authorBransgrove, RM
dc.contributor.authorMason, PT
dc.contributor.authorOak, A
dc.contributor.authorBansode, A
dc.contributor.authorPatankar, R
dc.contributor.authorGleason, ZD
dc.contributor.authorSim, MK
dc.contributor.authorWhitesell, A
dc.contributor.authorAllen, MJ
dc.date.accessioned2018-11-01T13:02:51Z
dc.date.issued2015-05-21
dc.description.abstractIt is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%).en_GB
dc.description.sponsorshipThis work was supported by grants awarded to MJA from the Bill & Melinda Gates Foundation (OPP1044451 and OPP1095464).en_GB
dc.identifier.citationVol. 5, artcile 9461en_GB
dc.identifier.doi10.1038/srep09461
dc.identifier.urihttp://hdl.handle.net/10871/34591
dc.language.isoenen_GB
dc.publisherSpringer Natureen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/25999243en_GB
dc.rights© 2015 The Author(s). Open access. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en_GB
dc.subjectAlginatesen_GB
dc.subjectBiological Oxygen Demand Analysisen_GB
dc.subjectBioreactorsen_GB
dc.subjectCopperen_GB
dc.subjectEnterobacteriaceaeen_GB
dc.subjectEscherichia colien_GB
dc.subjectGlucuronic Aciden_GB
dc.subjectHexuronic Acidsen_GB
dc.subjectMicrobial Sensitivity Testsen_GB
dc.subjectSewageen_GB
dc.subjectWaste Disposal, Fluiden_GB
dc.titleSwirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluentsen_GB
dc.typeArticleen_GB
dc.date.available2018-11-01T13:02:51Z
exeter.place-of-publicationEnglanden_GB
dc.descriptionThis is the final version. Available on open access from Springer Nature via the DOI in this recorden_GB
dc.identifier.journalScientific Reportsen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record