Show simple item record

dc.contributor.authorDetommaso, G
dc.contributor.authorDodwell, T
dc.contributor.authorScheichl, R
dc.date.accessioned2019-01-15T13:14:34Z
dc.date.issued2019-01-15
dc.description.abstractIn this paper, we present a generalisation of the Multilevel Monte Carlo (MLMC) method to a setting where the level parameter is a continuous variable. This Continuous Level Monte Carlo (CLMC) estimator provides a natural framework in PDE applications to adapt the model hierarchy to each sample. In addition, it can be made unbiased with respect to the expected value of the true quantity of interest provided the quantity of interest converges sufficiently fast. The practical implementation of the CLMC estimator is based on interpolating actual evaluations of the quantity of interest at a finite number of resolutions. As our new level parameter, we use the logarithm of a goal-oriented finite element error estimator for the accuracy of the quantity of interest. We prove the unbiasedness, as well as a complexity theorem that shows the same rate of complexity for CLMC as for MLMC. Finally, we provide some numerical evidence to support our theoretical results, by successfully testing CLMC on a standard PDE test problem. The numerical experiments demonstrate clear gains for sample-wise adaptive refinement strategies over uniform refinements.en_GB
dc.identifier.citationVol. 7 (1), pp. 93-116.en_GB
dc.identifier.doi10.1137/18M1172259
dc.identifier.urihttp://hdl.handle.net/10871/35461
dc.language.isoenen_GB
dc.publisherSociety for Industrial and Applied Mathematicsen_GB
dc.rights© 2019, Society for Industrial and Applied Mathematics and American Statistical Association.
dc.titleContinuous Level Monte Carlo and Sample-Adaptive Model Hierarchiesen_GB
dc.typeArticleen_GB
dc.date.available2019-01-15T13:14:34Z
dc.descriptionThis is the final version. Available from SIAM via the DOI in this record.en_GB
dc.identifier.eissn2166-2525
dc.identifier.journalSIAM/ASA Journal on Uncertainty Quantificationen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018-10-09
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-10-09
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-01-15T13:12:14Z
refterms.versionFCDAM
refterms.dateFOA2019-01-24T11:50:11Z


Files in this item

This item appears in the following Collection(s)

Show simple item record