Show simple item record

dc.contributor.authorGliga, S
dc.contributor.authorHrkac, G
dc.contributor.authorDonnelly, C
dc.contributor.authorBüchi, J
dc.contributor.authorKleibert, A
dc.contributor.authorCui, J
dc.contributor.authorFarhan, A
dc.contributor.authorKirk, E
dc.contributor.authorChopdekar, RV
dc.contributor.authorMasaki, Y
dc.contributor.authorBingham, NS
dc.contributor.authorScholl, A
dc.contributor.authorStamps, RL
dc.contributor.authorHeyderman, LJ
dc.date.accessioned2019-02-13T10:01:55Z
dc.date.issued2017-10-23
dc.description.abstractModern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1,2 can lead to specific collective behaviour3, including emergent magnetic monopoles4,5, charge screening6,7 and transport8,9, as well as magnonic response10-12. Here, we demonstrate a spin-ice-based activematerial in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13,14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipRoyal Society (Government)en_GB
dc.description.sponsorshipUniversity of St Poeltenen_GB
dc.description.sponsorshipEuropean Union Horizon 2020: Marie Sklodowska-Curie granten_GB
dc.description.sponsorshipVienna Science and Technology Funden_GB
dc.description.sponsorshipSwiss National Science Foundationen_GB
dc.identifier.citationVol. 16, pp. 1106 - 1112en_GB
dc.identifier.doi10.1038/NMAT5007
dc.identifier.grantnumberEP/L019876/1en_GB
dc.identifier.grantnumberEP/M015173/1en_GB
dc.identifier.grantnumber708674en_GB
dc.identifier.grantnumberUF080837en_GB
dc.identifier.grantnumberEP/ L002922/1en_GB
dc.identifier.grantnumberEP/M024423/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/35925
dc.language.isoenen_GB
dc.publisherNature Researchen_GB
dc.rights© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserveden_GB
dc.titleEmergent dynamic chirality in a thermally driven artificial spin ratcheten_GB
dc.typeArticleen_GB
dc.date.available2019-02-13T10:01:55Z
dc.identifier.issn1476-1122
dc.descriptionThis is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record. en_GB
dc.identifier.journalNature Materialsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2017-09-12
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
exeter.funder::Royal Society (Government)en_GB
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
exeter.funder::University of St Poeltenen_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2017-09-12
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-02-13T09:51:50Z
refterms.versionFCDAM
refterms.dateFOA2019-02-13T10:01:57Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record