Show simple item record

dc.contributor.authorArnold, SR
dc.contributor.authorLombardozzi, D
dc.contributor.authorLamarque, JF
dc.contributor.authorRichardson, T
dc.contributor.authorEmmons, LK
dc.contributor.authorTilmes, S
dc.contributor.authorSitch, SA
dc.contributor.authorFolberth, G
dc.contributor.authorHollaway, MJ
dc.contributor.authorVal Martin, M
dc.date.accessioned2019-02-26T11:01:43Z
dc.date.issued2018-11-28
dc.description.abstractTropospheric ozone (O3) pollution is known to damage vegetation, reducing photosynthesis and stomatal conductance, resulting in modified plant transpiration to the atmosphere. We use an Earth system model to show that global transpiration response to near-present-day surface tropospheric ozone results in large-scale global perturbations to net outgoing long-wave and incoming shortwave radiation. Our results suggest that the radiative effect is dominated by a reduction in shortwave cloud forcing in polluted regions, in response to ozone-induced reduction in land-atmosphere moisture flux and atmospheric humidity. We simulate a statistically significant response of annual surface air temperature of up to ~ +1.5 K due to this ozone effect in vegetated regions subjected to ozone pollution. This mechanism is expected to further increase the net warming resulting from historic and future increases in tropospheric ozone.en_GB
dc.description.sponsorshipNational Science Foundationen_GB
dc.description.sponsorshipNational Institute of Food and Agriculture/U.S. Department of Agriculture.en_GB
dc.description.sponsorshipNational Center for Atmospheric Research (NCAR)en_GB
dc.description.sponsorshipNatural Environment Research Council.en_GB
dc.description.sponsorshipU.S. Department of Energy (Office of Science, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy, Solar Energy Technology Program).en_GB
dc.identifier.citationVol. 45 (23), pp. 13 - 079en_GB
dc.identifier.doi10.1029/2018GL079938
dc.identifier.grantnumber2015‐67003‐23489en_GB
dc.identifier.grantnumber2015‐67003‐23485en_GB
dc.identifier.grantnumberDE‐FC03‐97ER62402/A010en_GB
dc.identifier.grantnumberDE‐SC0012972en_GB
dc.identifier.grantnumberNE/H020241/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/36066
dc.language.isoenen_GB
dc.publisherAmerican Geophysical Union (AGU)en_GB
dc.rights.embargoreasonUnder embargo until 28 May 2019 in compliance with publisher policy.
dc.rights©2018. American Geophysical Union. All Rights Reserved.en_GB
dc.subjecttropospheric ozoneen_GB
dc.subjectclimateen_GB
dc.subjecttranspirationen_GB
dc.subjectvegetation modelen_GB
dc.subjectair qualityen_GB
dc.titleSimulated Global Climate Response to Tropospheric Ozone-Induced Changes in Plant Transpirationen_GB
dc.typeArticleen_GB
dc.date.available2019-02-26T11:01:43Z
dc.identifier.issn0094-8276
dc.descriptionThis is the final version. Available from American Geophysical Union (AGU) via the DOI in this record.en_GB
dc.identifier.journalGeophysical Research Lettersen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018-11-25
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2018-11-25
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-02-26T10:56:19Z
refterms.versionFCDVoR
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record