The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc
dc.contributor.author | Pullin, H | |
dc.contributor.author | Crane, R | |
dc.contributor.author | Morgan, D | |
dc.contributor.author | Scott, T | |
dc.date.accessioned | 2019-03-01T13:27:27Z | |
dc.date.issued | 2017-01-31 | |
dc.description.abstract | This work has investigated the influence of common groundwater anions (Cl−, NO3−, SO42− and HCO3−) on the corrosion behaviour and associated removal of copper (Cu) and zinc (Zn) ions onto nanoscale zero-valent iron particles (nZVI). After 16 week exposure to solutions containing each anion at 10 mM concentrations, nZVI was observed to corrode into different iron (hydr)oxide phases (determined using XRD), depending upon the anion present: HNO3− produced goethite particles; NO3− produced predominantly magnetite/maghemite particles; both SO42− and Cl− produced a mixture of phases, including magnetite/maghemite, lepidocrocite and goethite. For solutions containing the different anions and 0.3 mM concentrations of Cu or Zn, near-total metal removal onto nZVI was recorded in the initial stages of the reaction (e.g. <24 h) for all systems tested. However, when Cl− and SO42− were also present significant subsequent desorption was recorded and attributed to the influence of anionic pitting corrosion. In contrast, no Cu or Zn desorption was recorded for batch systems containing NO3−, which was attributed to the enmeshment of Cu or Zn in a mixed-valent iron oxide shell. Results herein therefore demonstrate that NO3− could be utilised alongside nZVI to improve its long-term performance for in situ water treatment applications. | en_GB |
dc.description.sponsorship | National Enviroment Research Council (NERC) | en_GB |
dc.identifier.citation | Vol. 5 (1), pp. 1166 - 1173 | en_GB |
dc.identifier.doi | 10.1016/j.jece.2017.01.038 | |
dc.identifier.uri | http://hdl.handle.net/10871/36159 | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights | Crown Copyright © 2017 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | en_GB |
dc.subject | Cu and Zn sorption behaviour | en_GB |
dc.subject | Phase transition pathways | en_GB |
dc.subject | Anionic effects on corrosion | en_GB |
dc.subject | Iron nanoparticles | en_GB |
dc.title | The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2019-03-01T13:27:27Z | |
dc.identifier.issn | 2213-3437 | |
dc.description | This is the final version. Available from Elsevier via the DOI in this record. | en_GB |
dc.identifier.journal | Journal of Environmental Chemical Engineering | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2017-01-24 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2017-01-24 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2019-03-01T13:21:19Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2019-03-01T13:27:30Z | |
refterms.panel | B | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as Crown Copyright © 2017 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).