Show simple item record

dc.contributor.authorLi, K
dc.contributor.authorChen, R
dc.contributor.authorMin, G
dc.contributor.authorYao, X
dc.date.accessioned2019-03-15T09:07:43Z
dc.date.issued2018-08-20
dc.description.abstract© 2018 IEEE. Rather than a whole Pareto-optimal front, which demands too many points (especially in a high-dimensional space), the decision maker (DM) may only be interested in a partial region, called the region of interest (ROI). In this case, solutions outside this region can be noisy to the decision-making procedure. Even worse, there is no guarantee that we can find the preferred solutions when tackling problems with complicated properties or many objectives. In this paper, we develop a systematic way to incorporate the DM's preference information into the decomposition-based evolutionary multiobjective optimization methods. Generally speaking, our basic idea is a nonuniform mapping scheme by which the originally evenly distributed reference points on a canonical simplex can be mapped to new positions close to the aspiration-level vector supplied by the DM. By this means, we are able to steer the search process toward the ROI either directly or interactively and also handle many objectives. Meanwhile, solutions lying on the boundary can be approximated as well given the DM's requirements. Furthermore, the extent of the ROI is intuitively understandable and controllable in a closed form. Extensive experiments on a variety of benchmark problems with 2 to 10 objectives, fully demonstrate the effectiveness of our proposed method for approximating the preferred solutions in the ROI.en_GB
dc.description.sponsorshipRoyal Society (Government)en_GB
dc.description.sponsorshipMinistry of Science and Technology of Chinaen_GB
dc.description.sponsorshipScience and Technology Innovation Committee Foundation of Shenzhenen_GB
dc.description.sponsorshipShenzhen Peacock Planen_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citationVol. 48 (12), pp. 3359 - 3370en_GB
dc.identifier.doi10.1109/TCYB.2018.2859363
dc.identifier.grantnumberIEC\NSFC\170243en_GB
dc.identifier.grantnumber2017YFC0804003en_GB
dc.identifier.grantnumberZDSYS201703031748284en_GB
dc.identifier.grantnumberKQTD2016112514355531en_GB
dc.identifier.grantnumberEP/J017515/1en_GB
dc.identifier.grantnumberEP/P005578/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/36475
dc.language.isoenen_GB
dc.publisherInstitute of Electrical and Electronics Engineersen_GB
dc.rightsThis work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/en_GB
dc.subjectDecomposition-based methoden_GB
dc.subjectevolutionary multiobjective optimization (EMO)en_GB
dc.subjectreference pointsen_GB
dc.subjectuser-preference incorporationen_GB
dc.titleIntegration of preferences in decomposition multiobjective optimizationen_GB
dc.typeArticleen_GB
dc.date.available2019-03-15T09:07:43Z
dc.identifier.issn2168-2267
dc.descriptionThis is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.en_GB
dc.identifier.journalIEEE Transactions on Cyberneticsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_GB
dcterms.dateAccepted2018-07-13
exeter.funder::Royal Society (Government)en_GB
rioxxterms.funderRoyal Societyen_GB
rioxxterms.identifier.projectIEC/NSFC/170243en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-07-13
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-03-15T09:03:06Z
refterms.versionFCDAM
refterms.dateFOA2019-03-15T09:07:46Z
refterms.panelBen_GB
refterms.depositExceptionpublishedGoldOA
rioxxterms.funder.project510fa877-d6b4-43f5-8520-a617088da25cen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
Except where otherwise noted, this item's licence is described as This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/