dc.contributor.author | Corbett, AJ | |
dc.date.accessioned | 2019-04-03T12:20:34Z | |
dc.date.issued | 2016-05-05 | |
dc.description.abstract | We prove a precise formula relating the Bessel period of certain automorphic forms on GSp4(AF) to a central L-value. This is a special case of the refined Gan–Gross–Prasad conjecture for the groups (SO5,SO2) as set out by Ichino–Ikeda [12] and Liu [14]. This conjecture is deep and hard to prove in full generality; in this paper we succeed in proving the conjecture for forms lifted, via automorphic induction, from GL2(AE) where E is a quadratic extension of F. The case where E=F×F has been previously dealt with by Liu [14]. | en_GB |
dc.identifier.citation | Vol. 29 (1), pp. 59-90 | en_GB |
dc.identifier.doi | 10.1515/forum-2015-0164 | |
dc.identifier.uri | http://hdl.handle.net/10871/36720 | |
dc.language.iso | en | en_GB |
dc.publisher | De Gruyter | en_GB |
dc.rights | © 2016 De Gruyter | en_GB |
dc.subject | Automorphic period integrals | en_GB |
dc.subject | the refined Gan–Gross–Prasadconjecture | en_GB |
dc.title | A proof of the refined Gan–Gross–Prasad conjecture for non-endoscopic Yoshida lifts | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2019-04-03T12:20:34Z | |
dc.identifier.issn | 0933-7741 | |
dc.description | This is the final version. Available from De Gruyter via the DOI in this record. | en_GB |
dc.identifier.journal | Forum Mathematicum | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2016-01-29 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2016-05-05 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2019-04-03T12:17:46Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2019-04-03T12:20:37Z | |
refterms.panel | B | en_GB |