Show simple item record

dc.contributor.authorCorbett, AJ
dc.date.accessioned2019-04-03T12:20:34Z
dc.date.issued2016-05-05
dc.description.abstractWe prove a precise formula relating the Bessel period of certain automorphic forms on GSp4(AF) to a central L-value. This is a special case of the refined Gan–Gross–Prasad conjecture for the groups (SO5,SO2) as set out by Ichino–Ikeda [12] and Liu [14]. This conjecture is deep and hard to prove in full generality; in this paper we succeed in proving the conjecture for forms lifted, via automorphic induction, from GL2(AE) where E is a quadratic extension of F. The case where E=F×F has been previously dealt with by Liu [14].en_GB
dc.identifier.citationVol. 29 (1), pp. 59-90en_GB
dc.identifier.doi10.1515/forum-2015-0164
dc.identifier.urihttp://hdl.handle.net/10871/36720
dc.language.isoenen_GB
dc.publisherDe Gruyteren_GB
dc.rights© 2016 De Gruyteren_GB
dc.subjectAutomorphic period integralsen_GB
dc.subjectthe refined Gan–Gross–Prasadconjectureen_GB
dc.titleA proof of the refined Gan–Gross–Prasad conjecture for non-endoscopic Yoshida liftsen_GB
dc.typeArticleen_GB
dc.date.available2019-04-03T12:20:34Z
dc.identifier.issn0933-7741
dc.descriptionThis is the final version. Available from De Gruyter via the DOI in this record.en_GB
dc.identifier.journalForum Mathematicumen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2016-01-29
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2016-05-05
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-04-03T12:17:46Z
refterms.versionFCDVoR
refterms.dateFOA2019-04-03T12:20:37Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record