Show simple item record

dc.contributor.authorCorbett, A
dc.contributor.authorSaha, A
dc.date.accessioned2019-04-03T12:52:05Z
dc.date.issued2018-11-20
dc.description.abstractLet E be an elliptic curve over Q of conductor N. We obtain an explicit formula, as a product of local terms, for the ramification index at each cusp of a modular parametrization of E by X0(N). Our formula shows that the ramification index always divides 24, a fact that had been previously conjectured by Brunault as a result of numerical computations. In fact, we prove a more general result which gives the order of vanishing at each cusp of a holomorphic newform of arbitary level, weight and character, provided that its field of rationality satisfies a certain condition. The above result relies on a purely p-adic computation of possibly independent interest. Let F be a non-archimedean local field of characteristic 0 and π an irreducible, admissible, generic representation of GL2(F). We introduce a new integral invariant, which we call the vanishing index and denote eπ(l), that measures the degree of “extra vanishing” at matrices of level l of the Whittaker function associated to the new-vector of π. Our main local result writes down the value of eπ(l) in every case.en_GB
dc.identifier.citationVol. 25 (6), pp. 1771-1804en_GB
dc.identifier.doi10.4310/MRL.2018.v25.n6.a4
dc.identifier.urihttp://hdl.handle.net/10871/36721
dc.language.isoenen_GB
dc.publisherInternational Pressen_GB
dc.rights© 2018 International Pressen_GB
dc.titleOn the order of vanishing of newforms at cuspsen_GB
dc.typeArticleen_GB
dc.date.available2019-04-03T12:52:05Z
dc.identifier.issn1073-2780
pubs.declined2019-04-03T11:14:01.181+0100
dc.descriptionThis is the author accepted manuscript. The final version is available from International Press via the DOI in this recorden_GB
dc.identifier.journalMathematical Research Lettersen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2017-07-29
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-11-20
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-04-03T12:50:36Z
refterms.versionFCDAM
refterms.dateFOA2019-04-03T12:52:08Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record