Show simple item record

dc.contributor.authorFeldmann, J
dc.contributor.authorYoungblood, N
dc.contributor.authorWright, CD
dc.contributor.authorBhaskaran, H
dc.contributor.authorPernice, WHP
dc.date.accessioned2019-05-20T12:26:52Z
dc.date.issued2019-05-08
dc.description.abstractSoftware implementations of brain-inspired computing underlie many important computational tasks, from image processing to speech recognition, artificial intelligence and deep learning applications. Yet, unlike real neural tissue, traditional computing architectures physically separate the core computing functions of memory and processing, making fast, efficient and low-energy computing difficult to achieve. To overcome such limitations, an attractive alternative is to design hardware that mimics neurons and synapses. Such hardware, when connected in networks or neuromorphic systems, processes information in a way more analogous to brains. Here we present an all-optical version of such a neurosynaptic system, capable of supervised and unsupervised learning. We exploit wavelength division multiplexing techniques to implement a scalable circuit architecture for photonic neural networks, successfully demonstrating pattern recognition directly in the optical domain. Such photonic neurosynaptic networks promise access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEuropean Commissionen_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)en_GB
dc.identifier.citationVol. 569, pp. 208 - 214en_GB
dc.identifier.doi10.1038/s41586-019-1157-8
dc.identifier.grantnumberEP/M015130/1en_GB
dc.identifier.grantnumberEP/J018694/1en_GB
dc.identifier.grantnumberPE 1832/5-1en_GB
dc.identifier.grantnumberEP/M015173/1en_GB
dc.identifier.grantnumber724707en_GB
dc.identifier.grantnumber780848 (Fun-COMP)en_GB
dc.identifier.urihttp://hdl.handle.net/10871/37152
dc.language.isoenen_GB
dc.publisherNature Researchen_GB
dc.rights.embargoreasonUnder embargo until 8 November 2019 in compliance with publisher policy.en_GB
dc.rights© 2019 Springer Nature Publishing AGen_GB
dc.titleAll-optical spiking neurosynaptic networks with self-learning capabilitiesen_GB
dc.typeArticleen_GB
dc.date.available2019-05-20T12:26:52Z
dc.identifier.issn0028-0836
dc.descriptionThis is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.en_GB
dc.identifier.journalNatureen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2019-03-21
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
exeter.funder::European Commissionen_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2019-05-08
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-05-20T11:30:44Z
refterms.versionFCDVoR
refterms.dateFOA2019-11-08T00:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record