Show simple item record

dc.contributor.authorHolden, PB
dc.contributor.authorEdwards, NR
dc.contributor.authorRidgwell, A
dc.contributor.authorWilkinson, RD
dc.contributor.authorFraedrich, K
dc.contributor.authorLunkeit, F
dc.contributor.authorPollitt, H
dc.contributor.authorMercure, J-F
dc.contributor.authorSalas, P
dc.contributor.authorLam, A
dc.contributor.authorKnobloch, F
dc.contributor.authorChewpreecha, U
dc.contributor.authorViñuales, JE
dc.date.accessioned2019-07-02T09:51:54Z
dc.date.issued2018-06-25
dc.description.abstractThe Paris Agreement aims to address the gap between existing climate policies and policies consistent with “holding the increase in global average temperature to well below 2 C”. The feasibility of meeting the target has been questioned both in terms of the possible requirement for negative emissions and ongoing debate on the sensitivity of the climate–carbon-cycle system. Using a sequence of ensembles of a fully dynamic three-dimensional climate–carbon-cycle model, forced by emissions from an integrated assessment model of regional-level climate policy, economy, and technological transformation, we show that a reasonable interpretation of the Paris Agreement is still technically achievable. Specifically, limiting peak (decadal) warming to less than 1.7 °C, or end-of-century warming to less than 1.54 °C, occurs in 50% of our simulations in a policy scenario without net negative emissions or excessive stringency in any policy domain. We evaluate two mitigation scenarios, with 200 gigatonnes of carbon and 307 gigatonnes of carbon post-2017 emissions respectively, quantifying the spatio-temporal variability of warming, precipitation, ocean acidification and marine productivity. Under rapid decarbonization decadal variability dominates the mean response in critical regions, with significant implications for decision-making, demanding impact methodologies that address non-linear spatio-temporal responses. Ignoring carbon-cycle feedback uncertainties (which can explain 47% of peak warming uncertainty) becomes unreasonable under strong mitigation conditions.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipEconomic and Social Research Council (ESRC)en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipPhilomathia Foundationen_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.identifier.citationVol. 8, pp. 609 - 613en_GB
dc.identifier.doi10.1038/s41558-018-0197-7
dc.identifier.grantnumberEP/ K007254/1en_GB
dc.identifier.grantnumberEP/N002504/1en_GB
dc.identifier.grantnumberES/N013174/1en_GB
dc.identifier.grantnumberNE/P015093/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/37793
dc.language.isoenen_GB
dc.publisherNature Researchen_GB
dc.rights© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.en_GB
dc.titleClimate–carbon cycle uncertainties and the Paris Agreementen_GB
dc.typeArticleen_GB
dc.date.available2019-07-02T09:51:54Z
dc.identifier.issn1758-678X
dc.descriptionThis is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recorden_GB
dc.descriptionData availability: The data that support the findings of this study are available from the corresponding author on request.en_GB
dc.identifier.journalNature Climate Changeen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018-05-15
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-06-25
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2019-07-02T09:48:30Z
refterms.versionFCDAM
refterms.dateFOA2019-07-02T09:51:57Z
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record