Deep divergence-based approach to clustering
dc.contributor.author | Kampffmeyer, M | |
dc.contributor.author | Løkse, S | |
dc.contributor.author | Bianchi, FM | |
dc.contributor.author | Livi, L | |
dc.contributor.author | Salberg, AB | |
dc.contributor.author | Jenssen, R | |
dc.date.accessioned | 2019-07-17T08:50:42Z | |
dc.date.issued | 2019-02-08 | |
dc.description.abstract | A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps. | en_GB |
dc.description.sponsorship | Research Council of Norway | en_GB |
dc.identifier.citation | Vol. 113, pp. 91 - 101 | en_GB |
dc.identifier.doi | 10.1016/j.neunet.2019.01.015 | |
dc.identifier.grantnumber | 239844 | en_GB |
dc.identifier.grantnumber | 270738 | en_GB |
dc.identifier.grantnumber | 234339 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/38003 | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights.embargoreason | Under embargo until 8 February 2020 in compliance with publisher policy. | en_GB |
dc.rights | © 2019. This version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_GB |
dc.subject | Deep learning | en_GB |
dc.subject | Clustering | en_GB |
dc.subject | Unsupervised learning | en_GB |
dc.subject | Information-theoretic learning | en_GB |
dc.subject | Divergence | en_GB |
dc.title | Deep divergence-based approach to clustering | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2019-07-17T08:50:42Z | |
dc.identifier.issn | 0893-6080 | |
dc.description | This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record | en_GB |
dc.identifier.journal | Neural Networks | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_GB |
dcterms.dateAccepted | 2019-01-29 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2019-01-29 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2019-07-17T08:44:56Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2020-02-08T00:00:00Z | |
refterms.panel | B | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2019. This version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/