Temperature management in photovoltaic (PV) is critical for the power output. Phase Change Material (PCM) usage enables one to remove heat from the system and achieve enhanced electrical output. This study aims at finding the period of PV electrical enhancement, the increase in power and increase in electrical efficiency achieved using ...
Temperature management in photovoltaic (PV) is critical for the power output. Phase Change Material (PCM) usage enables one to remove heat from the system and achieve enhanced electrical output. This study aims at finding the period of PV electrical enhancement, the increase in power and increase in electrical efficiency achieved using PCM under different working circumstances. Results suggest that as the angle of approach of wind changes from 75° to 0° the electrical enhancement period elevates from 7.0 h to 8.6 h for 5 cm deep PCM box. But, the increase in power drops from 17.6 W/m 2 to 13.6 W/m 2 . As wind speed changes from 6 m/s to 0.2 m/s, the electrical enhancement period drops from 9.1 h to 6.4 h. But, the increase in power rises from 11.8 W/m 2 to 22.8 W/m 2 . The rise in ambient temperature 289 K to 299 K leads to decrement of electrical enhancement period from 12.6 h to 7.1 h. But the increase in power rises from 15.9 W/m 2 to 21.4 W/m 2 . Elevation in temperature for liquification from 291 K to 301 K leads to increment of electrical enhancement period from 6.5 h to 12.3 h.