dc.contributor.author | Andreani, NA | |
dc.contributor.author | Carraro, L | |
dc.contributor.author | Zhang, L | |
dc.contributor.author | Vos, M | |
dc.contributor.author | Cardazzo, B | |
dc.date.accessioned | 2019-09-04T14:24:15Z | |
dc.date.issued | 2019-04-01 | |
dc.description.abstract | Pseudomonas fluorescens Ps_77 is a blue-pigmenting strain able to cause food product discoloration, causing relevant economic losses especially in the dairy industry. Unlike non-pigmenting P. fluorescens, blue pigmenting strains previously were shown to carry a genomic region that includes homologs of trpABCDF genes, pointing at a possible role of the tryptophan biosynthetic pathway in production of the pigment. Here, we employ random mutagenesis to first identify the genes involved in blue-pigment production in P. fluorescens Ps_77 and second to investigate the biological function of the blue pigment. Genetic analyses based on the mapping of the random insertions allowed the identification of eight genes involved in pigment production, including the second copy of trpB (trpB_1) gene. Phenotypic characterization of Ps_77 white mutants demonstrated that the blue pigment increases oxidative-stress resistance. Indeed, while Ps_77 was growing at a normal rate in presence of 5 mM of H 2 O 2 , white mutants were completely inhibited. The antioxidative protection is not available for non-producing bacteria in co-culture with Ps_77. | en_GB |
dc.identifier.citation | Vol. 82, pp. 497 - 503 | en_GB |
dc.identifier.doi | 10.1016/j.fm.2019.03.028 | |
dc.identifier.uri | http://hdl.handle.net/10871/38539 | |
dc.language.iso | en | en_GB |
dc.publisher | Elsevier | en_GB |
dc.rights.embargoreason | Under embargo until 1 April 2020 in compliance with publisher policy | en_GB |
dc.rights | Copyright © 2019 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V. | en_GB |
dc.subject | Pseudomonas fluorescens | en_GB |
dc.subject | Transposon mutagenesis | en_GB |
dc.subject | Blue-pigment biosynthesis | en_GB |
dc.subject | Oxidative stress resistance | en_GB |
dc.subject | Tryptophan metabolism | en_GB |
dc.title | Transposon mutagenesis in Pseudomonas fluorescens reveals genes involved in blue pigment production and antioxidant protection. | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2019-09-04T14:24:15Z | |
dc.identifier.issn | 0740-0020 | |
dc.description | This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record | en_GB |
dc.identifier.journal | Food Microbiology | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2019-03-30 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2019-03-30 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2019-09-04T13:20:23Z | |
refterms.versionFCD | AM | |
refterms.panel | A | en_GB |